Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding
- URL: http://arxiv.org/abs/2212.09844v5
- Date: Sun, 19 May 2024 19:53:58 GMT
- Title: Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding
- Authors: Ashesh Rambachan, Amanda Coston, Edward Kennedy,
- Abstract summary: We propose a unified framework for the robust design and evaluation of predictive algorithms in selectively observed data.
We impose general assumptions on how much the outcome may vary on average between unselected and selected units.
We develop debiased machine learning estimators for the bounds on a large class of predictive performance estimands.
- Score: 2.8498944632323755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive algorithms inform consequential decisions in settings where the outcome is selectively observed given choices made by human decision makers. We propose a unified framework for the robust design and evaluation of predictive algorithms in selectively observed data. We impose general assumptions on how much the outcome may vary on average between unselected and selected units conditional on observed covariates and identified nuisance parameters, formalizing popular empirical strategies for imputing missing data such as proxy outcomes and instrumental variables. We develop debiased machine learning estimators for the bounds on a large class of predictive performance estimands, such as the conditional likelihood of the outcome, a predictive algorithm's mean square error, true/false positive rate, and many others, under these assumptions. In an administrative dataset from a large Australian financial institution, we illustrate how varying assumptions on unobserved confounding leads to meaningful changes in default risk predictions and evaluations of credit scores across sensitive groups.
Related papers
- Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
Real-world data streams can change unpredictably due to distribution shifts, feedback loops and adversarial actors.
We present a forecasting framework ensuring valid uncertainty estimates regardless of how data evolves.
arXiv Detail & Related papers (2024-09-27T21:46:42Z) - Quantifying Uncertainty in Deep Learning Classification with Noise in
Discrete Inputs for Risk-Based Decision Making [1.529943343419486]
We propose a mathematical framework to quantify prediction uncertainty for Deep Neural Network (DNN) models.
The prediction uncertainty arises from errors in predictors that follow some known finite discrete distribution.
Our proposed framework can support risk-based decision making in applications when discrete errors in predictors are present.
arXiv Detail & Related papers (2023-10-09T19:26:24Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Explainability's Gain is Optimality's Loss? -- How Explanations Bias
Decision-making [0.0]
Explanations help to facilitate communication between the algorithm and the human decision-maker.
Feature-based explanations' semantics of causal models induce leakage from the decision-maker's prior beliefs.
Such differences can lead to sub-optimal and biased decision outcomes.
arXiv Detail & Related papers (2022-06-17T11:43:42Z) - On the Fairness of Machine-Assisted Human Decisions [3.4069627091757178]
We show that the inclusion of a biased human decision-maker can revert common relationships between the structure of the algorithm and the qualities of resulting decisions.
In the lab experiment, we demonstrate how predictions informed by gender-specific information can reduce average gender disparities in decisions.
arXiv Detail & Related papers (2021-10-28T17:24:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - Fast, Optimal, and Targeted Predictions using Parametrized Decision
Analysis [0.0]
We develop a class of parametrized actions for Bayesian decision analysis that produce optimal, scalable, and simple targeted predictions.
Predictions are constructed for physical activity data from the National Health and Nutrition Examination Survey.
arXiv Detail & Related papers (2020-06-23T15:55:47Z) - Learning Overlapping Representations for the Estimation of
Individualized Treatment Effects [97.42686600929211]
Estimating the likely outcome of alternatives from observational data is a challenging problem.
We show that algorithms that learn domain-invariant representations of inputs are often inappropriate.
We develop a deep kernel regression algorithm and posterior regularization framework that substantially outperforms the state-of-the-art on a variety of benchmarks data sets.
arXiv Detail & Related papers (2020-01-14T12:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.