Plug & Play Directed Evolution of Proteins with Gradient-based Discrete
MCMC
- URL: http://arxiv.org/abs/2212.09925v2
- Date: Thu, 6 Apr 2023 21:02:20 GMT
- Title: Plug & Play Directed Evolution of Proteins with Gradient-based Discrete
MCMC
- Authors: Patrick Emami, Aidan Perreault, Jeffrey Law, David Biagioni, Peter C.
St. John
- Abstract summary: A long-standing goal of machine-learning-based protein engineering is to accelerate the discovery of novel mutations.
We introduce a sampling framework for evolving proteins in silico that supports mixing and matching a variety of unsupervised models.
By composing these models, we aim to improve our ability to evaluate unseen mutations and constrain search to regions of sequence space likely to contain functional proteins.
- Score: 1.0499611180329804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A long-standing goal of machine-learning-based protein engineering is to
accelerate the discovery of novel mutations that improve the function of a
known protein. We introduce a sampling framework for evolving proteins in
silico that supports mixing and matching a variety of unsupervised models, such
as protein language models, and supervised models that predict protein function
from sequence. By composing these models, we aim to improve our ability to
evaluate unseen mutations and constrain search to regions of sequence space
likely to contain functional proteins. Our framework achieves this without any
model fine-tuning or re-training by constructing a product of experts
distribution directly in discrete protein space. Instead of resorting to brute
force search or random sampling, which is typical of classic directed
evolution, we introduce a fast MCMC sampler that uses gradients to propose
promising mutations. We conduct in silico directed evolution experiments on
wide fitness landscapes and across a range of different pre-trained
unsupervised models, including a 650M parameter protein language model. Our
results demonstrate an ability to efficiently discover variants with high
evolutionary likelihood as well as estimated activity multiple mutations away
from a wild type protein, suggesting our sampler provides a practical and
effective new paradigm for machine-learning-based protein engineering.
Related papers
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - Efficiently Predicting Mutational Effect on Homologous Proteins by Evolution Encoding [7.067145619709089]
EvolMPNN is an efficient model to learn evolution-aware protein embeddings.
Our model shows up to 6.4% better than state-of-the-art methods and attains 36X inference speedup.
arXiv Detail & Related papers (2024-02-20T23:06:21Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering
the Language of Protein [76.18058946124111]
We propose a unified protein language model, xTrimoPGLM, to address protein understanding and generation tasks simultaneously.
xTrimoPGLM significantly outperforms other advanced baselines in 18 protein understanding benchmarks across four categories.
It can also generate de novo protein sequences following the principles of natural ones, and can perform programmable generation after supervised fine-tuning.
arXiv Detail & Related papers (2024-01-11T15:03:17Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
The ability to precisely predict protein thermostability is pivotal for various subfields and applications in biochemistry.
We introduce an ESM-assisted efficient approach that integrates protein sequence and structural features to predict the thermostability changes in protein upon single-point mutations.
arXiv Detail & Related papers (2023-12-07T03:25:49Z) - Multi-level Protein Representation Learning for Blind Mutational Effect
Prediction [5.207307163958806]
This paper introduces a novel pre-training framework that cascades sequential and geometric analyzers for protein structures.
It guides mutational directions toward desired traits by simulating natural selection on wild-type proteins.
We assess the proposed approach using a public database and two new databases for a variety of variant effect prediction tasks.
arXiv Detail & Related papers (2023-06-08T03:00:50Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
We propose a latent diffusion model that can reduce the complexity of protein modeling.
We show that our method can effectively generate novel protein backbone structures with high designability and efficiency.
arXiv Detail & Related papers (2023-05-06T19:10:19Z) - Accurate and Definite Mutational Effect Prediction with Lightweight
Equivariant Graph Neural Networks [2.381587712372268]
This research introduces a lightweight graph representation learning scheme that efficiently analyzes the microenvironment of wild-type proteins.
Our solution offers a wide range of benefits that make it an ideal choice for the community.
arXiv Detail & Related papers (2023-04-13T09:51:49Z) - SESNet: sequence-structure feature-integrated deep learning method for
data-efficient protein engineering [6.216757583450049]
We develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants.
We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship.
Our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants.
arXiv Detail & Related papers (2022-12-29T01:49:52Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution [18.726398852721204]
We propose an efficient, experimental design-oriented closed-loop optimization framework for protein directed evolution.
ODBO employs a combination of novel low-dimensional protein encoding strategy and Bayesian optimization enhanced with search space prescreening via outlier detection.
We conduct and report four protein directed evolution experiments that substantiate the capability of the proposed framework for finding variants with properties of interest.
arXiv Detail & Related papers (2022-05-19T13:21:31Z) - Using Genetic Programming to Predict and Optimize Protein Function [65.25258357832584]
We propose POET, a computational Genetic Programming tool based on evolutionary methods to enhance screening and mutagenesis in Directed Evolution.
As a proof-of-concept we use peptides that generate MRI contrast detected by the Chemical Exchange Saturation Transfer mechanism.
Our results indicate that a computational modelling tool like POET can help to find peptides with 400% better functionality than used before.
arXiv Detail & Related papers (2022-02-08T18:08:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.