Using Genetic Programming to Predict and Optimize Protein Function
- URL: http://arxiv.org/abs/2202.04039v2
- Date: Wed, 23 Feb 2022 00:32:47 GMT
- Title: Using Genetic Programming to Predict and Optimize Protein Function
- Authors: Iliya Miralavy, Alexander Bricco, Assaf Gilad and Wolfgang Banzhaf
- Abstract summary: We propose POET, a computational Genetic Programming tool based on evolutionary methods to enhance screening and mutagenesis in Directed Evolution.
As a proof-of-concept we use peptides that generate MRI contrast detected by the Chemical Exchange Saturation Transfer mechanism.
Our results indicate that a computational modelling tool like POET can help to find peptides with 400% better functionality than used before.
- Score: 65.25258357832584
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Protein engineers conventionally use tools such as Directed Evolution to find
new proteins with better functionalities and traits. More recently,
computational techniques and especially machine learning approaches have been
recruited to assist Directed Evolution, showing promising results. In this
paper, we propose POET, a computational Genetic Programming tool based on
evolutionary computation methods to enhance screening and mutagenesis in
Directed Evolution and help protein engineers to find proteins that have better
functionality. As a proof-of-concept we use peptides that generate MRI contrast
detected by the Chemical Exchange Saturation Transfer contrast mechanism. The
evolutionary methods used in POET are described, and the performance of POET in
different epochs of our experiments with Chemical Exchange Saturation Transfer
contrast are studied. Our results indicate that a computational modelling tool
like POET can help to find peptides with 400% better functionality than used
before.
Related papers
- Efficiently Predicting Mutational Effect on Homologous Proteins by Evolution Encoding [7.067145619709089]
EvolMPNN is an efficient model to learn evolution-aware protein embeddings.
Our model shows up to 6.4% better than state-of-the-art methods and attains 36X inference speedup.
arXiv Detail & Related papers (2024-02-20T23:06:21Z) - Accurate and Definite Mutational Effect Prediction with Lightweight
Equivariant Graph Neural Networks [2.381587712372268]
This research introduces a lightweight graph representation learning scheme that efficiently analyzes the microenvironment of wild-type proteins.
Our solution offers a wide range of benefits that make it an ideal choice for the community.
arXiv Detail & Related papers (2023-04-13T09:51:49Z) - Protein Sequence Design with Batch Bayesian Optimisation [0.0]
Protein sequence design is a challenging problem in protein engineering, which aims to discover novel proteins with useful biological functions.
directed evolution is a widely-used approach for protein sequence design, which mimics the evolution cycle in a laboratory environment and conducts an iterative protocol.
We propose a new method based on Batch Bayesian Optimization (Batch BO), a well-established optimization method, for protein sequence design.
arXiv Detail & Related papers (2023-03-18T14:53:20Z) - Plug & Play Directed Evolution of Proteins with Gradient-based Discrete
MCMC [1.0499611180329804]
A long-standing goal of machine-learning-based protein engineering is to accelerate the discovery of novel mutations.
We introduce a sampling framework for evolving proteins in silico that supports mixing and matching a variety of unsupervised models.
By composing these models, we aim to improve our ability to evaluate unseen mutations and constrain search to regions of sequence space likely to contain functional proteins.
arXiv Detail & Related papers (2022-12-20T00:26:23Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution [18.726398852721204]
We propose an efficient, experimental design-oriented closed-loop optimization framework for protein directed evolution.
ODBO employs a combination of novel low-dimensional protein encoding strategy and Bayesian optimization enhanced with search space prescreening via outlier detection.
We conduct and report four protein directed evolution experiments that substantiate the capability of the proposed framework for finding variants with properties of interest.
arXiv Detail & Related papers (2022-05-19T13:21:31Z) - GENEOnet: A new machine learning paradigm based on Group Equivariant
Non-Expansive Operators. An application to protein pocket detection [97.5153823429076]
We introduce a new computational paradigm based on Group Equivariant Non-Expansive Operators.
We test our method, called GENEOnet, on a key problem in drug design: detecting pockets on the surface of proteins that can host.
arXiv Detail & Related papers (2022-01-31T11:14:51Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.