Uncertainty Quantification of MLE for Entity Ranking with Covariates
- URL: http://arxiv.org/abs/2212.09961v2
- Date: Sun, 24 Mar 2024 18:11:41 GMT
- Title: Uncertainty Quantification of MLE for Entity Ranking with Covariates
- Authors: Jianqing Fan, Jikai Hou, Mengxin Yu,
- Abstract summary: This paper concerns with statistical estimation and inference for the ranking problems based on pairwise comparisons.
We propose a novel model, Co-Assisted Ranking Estimation (CARE) model, that extends the well-known Bradley-Terry-Luce (BTL) model.
We derive the maximum likelihood estimator of $alpha_i*_i=1n$ and $beta*$ under a sparse comparison graph.
We validate our theoretical results through large-scale numerical studies and an application to the mutual fund stock holding dataset.
- Score: 3.2839905453386162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper concerns with statistical estimation and inference for the ranking problems based on pairwise comparisons with additional covariate information such as the attributes of the compared items. Despite extensive studies, few prior literatures investigate this problem under the more realistic setting where covariate information exists. To tackle this issue, we propose a novel model, Covariate-Assisted Ranking Estimation (CARE) model, that extends the well-known Bradley-Terry-Luce (BTL) model, by incorporating the covariate information. Specifically, instead of assuming every compared item has a fixed latent score $\{\theta_i^*\}_{i=1}^n$, we assume the underlying scores are given by $\{\alpha_i^*+{x}_i^\top\beta^*\}_{i=1}^n$, where $\alpha_i^*$ and ${x}_i^\top\beta^*$ represent latent baseline and covariate score of the $i$-th item, respectively. We impose natural identifiability conditions and derive the $\ell_{\infty}$- and $\ell_2$-optimal rates for the maximum likelihood estimator of $\{\alpha_i^*\}_{i=1}^{n}$ and $\beta^*$ under a sparse comparison graph, using a novel `leave-one-out' technique (Chen et al., 2019) . To conduct statistical inferences, we further derive asymptotic distributions for the MLE of $\{\alpha_i^*\}_{i=1}^n$ and $\beta^*$ with minimal sample complexity. This allows us to answer the question whether some covariates have any explanation power for latent scores and to threshold some sparse parameters to improve the ranking performance. We improve the approximation method used in (Gao et al., 2021) for the BLT model and generalize it to the CARE model. Moreover, we validate our theoretical results through large-scale numerical studies and an application to the mutual fund stock holding dataset.
Related papers
- Statistical-Computational Trade-offs for Density Estimation [60.81548752871115]
We show that for a broad class of data structures their bounds cannot be significantly improved.
This is a novel emphstatistical-computational trade-off for density estimation.
arXiv Detail & Related papers (2024-10-30T15:03:33Z) - Minimax Hypothesis Testing for the Bradley-Terry-Luce Model [6.5990719141691825]
The Bradley-Terry-Luce (BTL) model is one of the most widely used models for ranking a collection of items or agents.
We propose a hypothesis test that determines whether a given pairwise comparison dataset, with $k$ comparisons per pair of agents, originates from an underlying BTL model.
arXiv Detail & Related papers (2024-10-10T20:28:05Z) - Convergence Analysis of Probability Flow ODE for Score-based Generative Models [5.939858158928473]
We study the convergence properties of deterministic samplers based on probability flow ODEs from both theoretical and numerical perspectives.
We prove the total variation between the target and the generated data distributions can be bounded above by $mathcalO(d3/4delta1/2)$ in the continuous time level.
arXiv Detail & Related papers (2024-04-15T12:29:28Z) - Sparse Gaussian Graphical Models with Discrete Optimization:
Computational and Statistical Perspectives [8.403841349300103]
We consider the problem of learning a sparse graph underlying an undirected Gaussian graphical model.
We propose GraphL0BnB, a new estimator based on an $ell_0$-penalized version of the pseudolikelihood function.
Our numerical experiments on real/synthetic datasets suggest that our method can solve, to near-optimality, problem instances with $p = 104$.
arXiv Detail & Related papers (2023-07-18T15:49:02Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - A Scale-Invariant Sorting Criterion to Find a Causal Order in Additive
Noise Models [49.038420266408586]
We show that sorting variables by increasing variance often yields an ordering close to a causal order.
We propose an efficient baseline algorithm termed $R2$-SortnRegress that exploits high $R2$-sortability.
Our findings reveal high $R2$-sortability as an assumption about the data generating process relevant to causal discovery.
arXiv Detail & Related papers (2023-03-31T17:05:46Z) - The Performance of the MLE in the Bradley-Terry-Luce Model in
$\ell_{\infty}$-Loss and under General Graph Topologies [76.61051540383494]
We derive novel, general upper bounds on the $ell_infty$ estimation error of the Bradley-Terry-Luce model.
We demonstrate that the derived bounds perform well and in some cases are sharper compared to known results.
arXiv Detail & Related papers (2021-10-20T23:46:35Z) - Dynamic Ranking with the BTL Model: A Nearest Neighbor based Rank
Centrality Method [5.025654873456756]
We study an extension of the classic BTL (Bradley-Terry-Luce) model for the static setting to our dynamic setup.
We aim at recovering the latent strengths of the items $w_t* in mathbbRn$ at any time.
We also complement our theoretical analysis with experiments on real and synthetic data.
arXiv Detail & Related papers (2021-09-28T14:01:40Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - Computationally and Statistically Efficient Truncated Regression [36.3677715543994]
We provide a computationally and statistically efficient estimator for the classical problem of truncated linear regression.
Our estimator uses Projected Descent Gradient (PSGD) without replacement on the negative log-likelihood of the truncated sample.
As a corollary, we show that SGD learns the parameters of single-layer neural networks with noisy activation functions.
arXiv Detail & Related papers (2020-10-22T19:31:30Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
We show that model-based MARL achieves a sample complexity of $tilde O(|S||B|(gamma)-3epsilon-2)$ for finding the Nash equilibrium (NE) value up to some $epsilon$ error.
We also show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge.
arXiv Detail & Related papers (2020-07-15T03:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.