論文の概要: Adam: Dense Retrieval Distillation with Adaptive Dark Examples
- arxiv url: http://arxiv.org/abs/2212.10192v2
- Date: Thu, 6 Jun 2024 15:20:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-08 01:19:21.643494
- Title: Adam: Dense Retrieval Distillation with Adaptive Dark Examples
- Title(参考訳): Adam: 暗黒の適応的な例による高濃度検索蒸留
- Authors: Chongyang Tao, Chang Liu, Tao Shen, Can Xu, Xiubo Geng, Binxing Jiao, Daxin Jiang,
- Abstract要約: 本稿では,教師が持つ暗黒知識を適応暗黒エクストリームで伝達する知識蒸留フレームワークであるADAMを提案する。
2つの広く利用されているベンチマークで実験を行い、本手法の有効性を検証する。
- 参考スコア(独自算出の注目度): 104.01735794498767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To improve the performance of the dual-encoder retriever, one effective approach is knowledge distillation from the cross-encoder ranker. Existing works construct the candidate passages following the supervised learning setting where a query is paired with a positive passage and a batch of negatives. However, through empirical observation, we find that even the hard negatives from advanced methods are still too trivial for the teacher to distinguish, preventing the teacher from transferring abundant dark knowledge to the student through its soft label. To alleviate this issue, we propose ADAM, a knowledge distillation framework that can better transfer the dark knowledge held in the teacher with Adaptive Dark exAMples. Different from previous works that only rely on one positive and hard negatives as candidate passages, we create dark examples that all have moderate relevance to the query through mixing-up and masking in discrete space. Furthermore, as the quality of knowledge held in different training instances varies as measured by the teacher's confidence score, we propose a self-paced distillation strategy that adaptively concentrates on a subset of high-quality instances to conduct our dark-example-based knowledge distillation to help the student learn better. We conduct experiments on two widely-used benchmarks and verify the effectiveness of our method.
- Abstract(参考訳): 二重エンコーダレトリバーの性能を向上させるため,クロスエンコーダロータからの知識蒸留が効果的である。
既存の作業は、クエリと正のパスと負のバッチがペアリングされる教師付き学習設定に従って、候補通路を構築する。
しかし、経験的な観察により、先進的な方法からの強烈な否定でさえ、教師が区別するにはささやかなものであり、教師がそのソフトラベルを通じて、豊富な暗黒知識を学生に伝達することを妨げていることがわかった。
この問題を緩和するために,教師が持つ暗黒知識を適応暗黒エクストリームで伝達する知識蒸留フレームワークであるADAMを提案する。
候補パスとして1つの正負と強負のみに依存する従来の研究とは異なり、離散空間における混合とマスキングを通じてクエリに適度な関連性を持つ暗黒の例を作成する。
さらに,教師の信頼度スコアによって異なる訓練インスタンスに保持される知識の質が変化するにつれて,高品質なインスタンスのサブセットに適応的に集中し,学生がよりよく学ぶための暗黙の知識蒸留を行うセルフペース蒸留戦略が提案される。
2つの広く利用されているベンチマークで実験を行い、本手法の有効性を検証する。
関連論文リスト
- Mitigating Accuracy-Robustness Trade-off via Balanced Multi-Teacher Adversarial Distillation [12.39860047886679]
敵対的トレーニングは、敵対的攻撃に対するディープニューラルネットワークの堅牢性を改善するための実践的なアプローチである。
本稿では,B-MTARD(Ba balanced Multi-Teacher Adversarial Robustness Distillation)を導入する。
B-MTARDは、様々な敵攻撃に対して最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-06-28T12:47:01Z) - Faithful Knowledge Distillation [75.59907631395849]
i) 教師と学生は、正しく分類されたデータセットのサンプルに近い点で意見が一致しないか、(ii) 蒸留した学生は、データセットのサンプルに関する教師と同じくらい自信があるか、という2つの重要な質問に焦点をあてる。
これらは、安全クリティカルな設定の中で、堅牢な教師から訓練された小さな学生ネットワークを配置することを考えると、重要な問題である。
論文 参考訳(メタデータ) (2023-06-07T13:41:55Z) - Unbiased Knowledge Distillation for Recommendation [66.82575287129728]
知識蒸留(KD)は推論遅延を低減するためにレコメンダシステム(RS)に応用されている。
従来のソリューションは、まずトレーニングデータから完全な教師モデルを訓練し、その後、その知識を変換して、コンパクトな学生モデルの学習を監督する。
このような標準的な蒸留パラダイムは深刻なバイアス問題を引き起こし、蒸留後に人気アイテムがより強く推奨されることになる。
論文 参考訳(メタデータ) (2022-11-27T05:14:03Z) - MDFlow: Unsupervised Optical Flow Learning by Reliable Mutual Knowledge
Distillation [12.249680550252327]
現在のアプローチでは、継続的な自己スーパービジョンの強化正則化項が課せられている。
本稿では,教師と学生のネットワーク間で信頼ある知識を相互に伝達する新たな相互蒸留フレームワークを提案する。
我々のアプローチはMDFlowと呼ばれ、挑戦的なベンチマーク上で最先端のリアルタイム精度と一般化能力を実現する。
論文 参考訳(メタデータ) (2022-11-11T05:56:46Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
物体検出のための知識蒸留(KD)は、教師モデルから知識を伝達することで、コンパクトな検出器を訓練することを目的としている。
教師モデルの反直感的知覚に固有の知識を蒸留することを目的とした,一貫性のない知識蒸留(IKD)を提案する。
本手法は, 1段, 2段, アンカーフリーの物体検出器において, 最先端のKDベースラインより優れる。
論文 参考訳(メタデータ) (2022-09-20T16:36:28Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
知識蒸留では、教師ネットワークから「暗黒の知識」を抽出し、学生ネットワークの学習を指導する。
一見異なる自己超越的なタスクが、単純だが強力なソリューションとして機能することを示します。
これらの自己超越信号の類似性を補助的タスクとして活用することにより、隠された情報を教師から生徒に効果的に転送することができる。
論文 参考訳(メタデータ) (2020-06-12T12:18:52Z) - Combating False Negatives in Adversarial Imitation Learning [67.99941805086154]
敵対的模倣学習では、エージェントエピソードと、所望の行動を表す専門家のデモンストレーションとを区別するために、判別器を訓練する。
訓練された方針がより成功することを学ぶと、負の例は専門家の例とますます似ている。
本研究では,偽陰性の影響を緩和し,BabyAI環境上で検証する手法を提案する。
論文 参考訳(メタデータ) (2020-02-02T14:56:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。