Inelastic Electron Scattering at a Single-Beam Structured Light Wave
- URL: http://arxiv.org/abs/2212.10255v1
- Date: Tue, 20 Dec 2022 14:04:22 GMT
- Title: Inelastic Electron Scattering at a Single-Beam Structured Light Wave
- Authors: Sven Ebel and Nahid Talebi
- Abstract summary: We demonstrate the inelastic scattering of slow-electron wavepackets at a propagating Hermite-Gaussian light beam.
This effect opens up a new platform for manipulating the electron wavepacket by utilizing the vast landscape of structured electromagnetic fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we demonstrate the inelastic scattering of slow-electron
wavepackets at a propagating Hermite-Gaussian light beam. The pulsed
Hermite-Gaussian beam thereby forms a pondermotive potential for the electron
with large enough momentum components, leading to the inelastic scattering of
electrons and their bunching along the longitudinal direction. We show that the
resulting energy-gain spectra after the interaction is strongly influenced by
the self-interference of the electron in this pondermotive potential. It is
shown that this effect is observable for various optical wavelengths and
intensities and further discuss how the variation of the electron velocity and
the light intensity allow to control the energy modulation of the electron
wavepacket. This effect opens up a new platform for manipulating the electron
wavepacket by utilizing the vast landscape of structured electromagnetic
fields.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Structured free-space optical fields for transverse and longitudinal control of electron matter waves [0.0]
Controlling free-electron momentum states is of high interest in electron microscopy to achieve momentum and energy resolved probing and manipulation of physical systems.
Here, we demonstrate both longitudinal and transverse phase control of a slow electron wavepacket by extending the Kapitza-Dirac effect to spatially-structured pulsed laser beams.
The interaction reveals the formation of distinct electron transverse momentum orders, each demonstrating a comb-like electron energy spectrum.
arXiv Detail & Related papers (2024-04-05T16:00:39Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Sequential phase-locked optical gating of free electrons [0.0]
We numerically explore the potential of sequential interactions between slow electrons and localized dipolar plasmons.
We show that a sequential phase-locking method can be employed to precisely manipulate the longitudinal and transverse recoil of the electron wavepacket.
arXiv Detail & Related papers (2023-08-29T13:54:50Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Self-trapping of slow electrons in the energy domain [0.0]
We show that slow electrons are subject to strong confinement in the energy domain due to the non-vanishing curvature of the electron dispersion.
The spectral trap is tunable and an appropriate choice of light field parameters can reduce the interaction dynamics to only two energy states.
arXiv Detail & Related papers (2022-09-29T15:07:11Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Optical Excitations with Electron Beams: Challenges and Opportunities [0.0]
We provide an overview of photonics research based on free electrons, supplemented by original theoretical insights.
We show that the excitation probability by a single electron is independent of its wave function, apart from a classical average over the transverse beam density profile.
We conclude with perspectives on various exciting directions for disruptive approaches to non-invasive spectroscopy and microscopy.
arXiv Detail & Related papers (2020-10-26T12:08:32Z) - Free-Electron Shaping Using Quantum Light [0.0]
Here, we show that control over electron pulse shaping, compression, and statistics can be improved by replacing coherent laser excitation by interaction with quantum light.
We find that compression is accelerated for fixed optical intensity by using phase-squeezed light, while amplitude squeezing produces ultrashort double-pulse profiles.
The generated electron pulses exhibit periodic revivals in complete analogy to the optical Talbot effect.
arXiv Detail & Related papers (2020-08-03T15:35:43Z) - Fast electrical modulation of strong near-field interactions between
erbium emitters and graphene [42.60602838972598]
We show fast, all-electrical modulation of the near-field interactions between a nanolayer of erbium emitters and graphene.
We demonstrate strong interactions with a >1,000-fold increased decay rate for 25% of the emitters.
This opens routes to quantum entanglement generation by collective plasmon emission or photon emission with controlled waveform.
arXiv Detail & Related papers (2020-07-22T08:48:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.