Identifying and Manipulating the Personality Traits of Language Models
- URL: http://arxiv.org/abs/2212.10276v1
- Date: Tue, 20 Dec 2022 14:24:11 GMT
- Title: Identifying and Manipulating the Personality Traits of Language Models
- Authors: Graham Caron and Shashank Srivastava
- Abstract summary: We investigate whether perceived personality in language models is exhibited consistently in their language generation.
We show that language models such as BERT and GPT2 can consistently identify and reflect personality markers in different contexts.
This behavior illustrates an ability to be manipulated in a highly predictable way, and frames them as tools for identifying personality traits and controlling personas in applications such as dialog systems.
- Score: 9.213700601337383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Psychology research has long explored aspects of human personality such as
extroversion, agreeableness and emotional stability. Categorizations like the
`Big Five' personality traits are commonly used to assess and diagnose
personality types. In this work, we explore the question of whether the
perceived personality in language models is exhibited consistently in their
language generation. For example, is a language model such as GPT2 likely to
respond in a consistent way if asked to go out to a party? We also investigate
whether such personality traits can be controlled. We show that when provided
different types of contexts (such as personality descriptions, or answers to
diagnostic questions about personality traits), language models such as BERT
and GPT2 can consistently identify and reflect personality markers in those
contexts. This behavior illustrates an ability to be manipulated in a highly
predictable way, and frames them as tools for identifying personality traits
and controlling personas in applications such as dialog systems. We also
contribute a crowd-sourced data-set of personality descriptions of human
subjects paired with their `Big Five' personality assessment data, and a
data-set of personality descriptions collated from Reddit.
Related papers
- Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
Personality recognition aims to identify the personality traits implied in user data such as dialogues and social media posts.
We propose a novel task named Explainable Personality Recognition, aiming to reveal the reasoning process as supporting evidence of the personality trait.
arXiv Detail & Related papers (2024-09-29T14:41:43Z) - The Effects of Embodiment and Personality Expression on Learning in LLM-based Educational Agents [0.7499722271664147]
This work investigates how personality expression and embodiment affect personality perception and learning in educational conversational agents.
We extend an existing personality-driven conversational agent framework by integrating LLM-based conversation support tailored to an educational application.
For each personality style, we assess three models: (1) a dialogue-only model that conveys personality through dialogue, (2) an animated human model that expresses personality solely through dialogue, and (3) an animated human model that expresses personality through both dialogue and body and facial animations.
arXiv Detail & Related papers (2024-06-24T09:38:26Z) - EERPD: Leveraging Emotion and Emotion Regulation for Improving Personality Detection [19.98674724777821]
We propose a new personality detection method called EERPD.
This method introduces the use of emotion regulation, a psychological concept highly correlated with personality, for personality prediction.
Experimental results demonstrate that EERPD significantly enhances the accuracy and robustness of personality detection.
arXiv Detail & Related papers (2024-06-23T11:18:55Z) - Dynamic Generation of Personalities with Large Language Models [20.07145733116127]
We introduce Dynamic Personality Generation (DPG), a dynamic personality generation method based on Hypernetworks.
We embed the Big Five personality theory into GPT-4 to form a personality assessment machine.
We then use this personality assessment machine to evaluate dialogues in script data, resulting in a personality-dialogue dataset.
arXiv Detail & Related papers (2024-04-10T15:17:17Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - InCharacter: Evaluating Personality Fidelity in Role-Playing Agents through Psychological Interviews [57.04431594769461]
This paper introduces a novel perspective to evaluate the personality fidelity of RPAs with psychological scales.
Experiments include various types of RPAs and LLMs, covering 32 distinct characters on 14 widely used psychological scales.
With InCharacter, we show that state-of-the-art RPAs exhibit personalities highly aligned with the human-perceived personalities of the characters, achieving an accuracy up to 80.7%.
arXiv Detail & Related papers (2023-10-27T08:42:18Z) - Editing Personality for Large Language Models [73.59001811199823]
This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs)
We construct PersonalityEdit, a new benchmark dataset to address this task.
arXiv Detail & Related papers (2023-10-03T16:02:36Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
We draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors.
To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors.
MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories.
We devise a Personality Prompting (P2) method to induce LLMs with specific personalities in a controllable way.
arXiv Detail & Related papers (2022-05-20T07:32:57Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
We present a novel peer-to-peer Hindi conversation dataset- Vyaktitv.
It consists of high-quality audio and video recordings of the participants, with Hinglish textual transcriptions for each conversation.
The dataset also contains a rich set of socio-demographic features, like income, cultural orientation, amongst several others, for all the participants.
arXiv Detail & Related papers (2020-08-31T17:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.