Dynamic Generation of Personalities with Large Language Models
- URL: http://arxiv.org/abs/2404.07084v1
- Date: Wed, 10 Apr 2024 15:17:17 GMT
- Title: Dynamic Generation of Personalities with Large Language Models
- Authors: Jianzhi Liu, Hexiang Gu, Tianyu Zheng, Liuyu Xiang, Huijia Wu, Jie Fu, Zhaofeng He,
- Abstract summary: We introduce Dynamic Personality Generation (DPG), a dynamic personality generation method based on Hypernetworks.
We embed the Big Five personality theory into GPT-4 to form a personality assessment machine.
We then use this personality assessment machine to evaluate dialogues in script data, resulting in a personality-dialogue dataset.
- Score: 20.07145733116127
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the realm of mimicking human deliberation, large language models (LLMs) show promising performance, thereby amplifying the importance of this research area. Deliberation is influenced by both logic and personality. However, previous studies predominantly focused on the logic of LLMs, neglecting the exploration of personality aspects. In this work, we introduce Dynamic Personality Generation (DPG), a dynamic personality generation method based on Hypernetworks. Initially, we embed the Big Five personality theory into GPT-4 to form a personality assessment machine, enabling it to evaluate characters' personality traits from dialogues automatically. We propose a new metric to assess personality generation capability based on this evaluation method. Then, we use this personality assessment machine to evaluate dialogues in script data, resulting in a personality-dialogue dataset. Finally, we fine-tune DPG on the personality-dialogue dataset. Experiments prove that DPG's personality generation capability is stronger after fine-tuning on this dataset than traditional fine-tuning methods, surpassing prompt-based GPT-4.
Related papers
- Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
Large language models (LLMs) have become increasingly proficient at simulating various personality traits.
We present a neuron-based approach for personality trait induction in LLMs.
arXiv Detail & Related papers (2024-10-16T07:47:45Z) - Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
Personality recognition aims to identify the personality traits implied in user data such as dialogues and social media posts.
We propose a novel task named Explainable Personality Recognition, aiming to reveal the reasoning process as supporting evidence of the personality trait.
arXiv Detail & Related papers (2024-09-29T14:41:43Z) - EERPD: Leveraging Emotion and Emotion Regulation for Improving Personality Detection [19.98674724777821]
We propose a new personality detection method called EERPD.
This method introduces the use of emotion regulation, a psychological concept highly correlated with personality, for personality prediction.
Experimental results demonstrate that EERPD significantly enhances the accuracy and robustness of personality detection.
arXiv Detail & Related papers (2024-06-23T11:18:55Z) - Large Language Models Can Infer Personality from Free-Form User Interactions [0.0]
GPT-4 can infer personality with moderate accuracy, outperforming previous approaches.
Results show that the direct focus on personality assessment did not result in a less positive user experience.
Preliminary analyses suggest that the accuracy of personality inferences varies only marginally across different socio-demographic subgroups.
arXiv Detail & Related papers (2024-05-19T20:33:36Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
Personality detection aims to detect one's personality traits underlying in social media posts.
Most existing methods learn post features directly by fine-tuning the pre-trained language models.
We propose a large language model (LLM) based text augmentation enhanced personality detection model.
arXiv Detail & Related papers (2024-03-12T12:10:18Z) - Driving Generative Agents With Their Personality [0.0]
This research explores the potential of Large Language Models (LLMs) to utilize psychometric values, specifically personality information, within the context of video game character development.
The research shows an LLM can consistently represent a given personality profile, thereby enhancing the human-like characteristics of game characters.
arXiv Detail & Related papers (2024-02-21T21:29:57Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Editing Personality for Large Language Models [73.59001811199823]
This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs)
We construct PersonalityEdit, a new benchmark dataset to address this task.
arXiv Detail & Related papers (2023-10-03T16:02:36Z) - Identifying and Manipulating the Personality Traits of Language Models [9.213700601337383]
We investigate whether perceived personality in language models is exhibited consistently in their language generation.
We show that language models such as BERT and GPT2 can consistently identify and reflect personality markers in different contexts.
This behavior illustrates an ability to be manipulated in a highly predictable way, and frames them as tools for identifying personality traits and controlling personas in applications such as dialog systems.
arXiv Detail & Related papers (2022-12-20T14:24:11Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
We present a novel peer-to-peer Hindi conversation dataset- Vyaktitv.
It consists of high-quality audio and video recordings of the participants, with Hinglish textual transcriptions for each conversation.
The dataset also contains a rich set of socio-demographic features, like income, cultural orientation, amongst several others, for all the participants.
arXiv Detail & Related papers (2020-08-31T17:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.