A Pattern Discovery Approach to Multivariate Time Series Forecasting
- URL: http://arxiv.org/abs/2212.10306v1
- Date: Tue, 20 Dec 2022 14:54:04 GMT
- Title: A Pattern Discovery Approach to Multivariate Time Series Forecasting
- Authors: Yunyao Cheng, Chenjuan Guo, Kaixuan Chen, Kai Zhao, Bin Yang, Jiandong
Xie, Christian S. Jensen, Feiteng Huang, Kai Zheng
- Abstract summary: State-of-the-art deep learning methods fail to construct models for full time series because model complexity grows exponentially with time series length.
We propose a novel pattern discovery method that can automatically capture diverse and complex time series patterns.
We also propose a learnable correlation matrix, that enables the model to capture distinct correlations among multiple time series.
- Score: 27.130141538089152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate time series forecasting constitutes important functionality in
cyber-physical systems, whose prediction accuracy can be improved significantly
by capturing temporal and multivariate correlations among multiple time series.
State-of-the-art deep learning methods fail to construct models for full time
series because model complexity grows exponentially with time series length.
Rather, these methods construct local temporal and multivariate correlations
within subsequences, but fail to capture correlations among subsequences, which
significantly affect their forecasting accuracy. To capture the temporal and
multivariate correlations among subsequences, we design a pattern discovery
model, that constructs correlations via diverse pattern functions. While the
traditional pattern discovery method uses shared and fixed pattern functions
that ignore the diversity across time series. We propose a novel pattern
discovery method that can automatically capture diverse and complex time series
patterns. We also propose a learnable correlation matrix, that enables the
model to capture distinct correlations among multiple time series. Extensive
experiments show that our model achieves state-of-the-art prediction accuracy.
Related papers
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - MPPN: Multi-Resolution Periodic Pattern Network For Long-Term Time
Series Forecasting [19.573651104129443]
Long-term time series forecasting plays an important role in various real-world scenarios.
Recent deep learning methods for long-term series forecasting tend to capture the intricate patterns of time series by decomposition-based or sampling-based methods.
We propose a novel deep learning network architecture, named Multi-resolution Periodic Pattern Network (MPPN), for long-term series forecasting.
arXiv Detail & Related papers (2023-06-12T07:00:37Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
We propose a simple yet efficient instance-wise graph-based framework to utilize the inter-dependencies of different variables at different time stamps.
The key idea of our framework is aggregating information from the historical time series of different variables to the current time series that we need to forecast.
arXiv Detail & Related papers (2021-09-14T07:38:35Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
We present Model-Attentive Ensemble learning for Sequence modeling (MAES)
MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions.
We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.
arXiv Detail & Related papers (2021-02-23T05:23:35Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications.
One major limitation is that they do not capture the relationships between different time-series explicitly.
We propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue.
arXiv Detail & Related papers (2020-09-04T07:46:19Z) - Pay Attention to Evolution: Time Series Forecasting with Deep
Graph-Evolution Learning [33.79957892029931]
This work presents a novel neural network architecture for time-series forecasting.
We named our method Recurrent Graph Evolution Neural Network (ReGENN)
An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones.
arXiv Detail & Related papers (2020-08-28T20:10:07Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
Time series forecasting is fundamental to scientific and engineering problems.
Deep learning methods are well suited for this problem.
We show that it improves over the state-of-the-art for standard metrics on many real-world data sets.
arXiv Detail & Related papers (2020-02-14T16:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.