MPPN: Multi-Resolution Periodic Pattern Network For Long-Term Time
Series Forecasting
- URL: http://arxiv.org/abs/2306.06895v1
- Date: Mon, 12 Jun 2023 07:00:37 GMT
- Title: MPPN: Multi-Resolution Periodic Pattern Network For Long-Term Time
Series Forecasting
- Authors: Xing Wang, Zhendong Wang, Kexin Yang, Junlan Feng, Zhiyan Song, Chao
Deng, Lin zhu
- Abstract summary: Long-term time series forecasting plays an important role in various real-world scenarios.
Recent deep learning methods for long-term series forecasting tend to capture the intricate patterns of time series by decomposition-based or sampling-based methods.
We propose a novel deep learning network architecture, named Multi-resolution Periodic Pattern Network (MPPN), for long-term series forecasting.
- Score: 19.573651104129443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-term time series forecasting plays an important role in various
real-world scenarios. Recent deep learning methods for long-term series
forecasting tend to capture the intricate patterns of time series by
decomposition-based or sampling-based methods. However, most of the extracted
patterns may include unpredictable noise and lack good interpretability.
Moreover, the multivariate series forecasting methods usually ignore the
individual characteristics of each variate, which may affecting the prediction
accuracy. To capture the intrinsic patterns of time series, we propose a novel
deep learning network architecture, named Multi-resolution Periodic Pattern
Network (MPPN), for long-term series forecasting. We first construct
context-aware multi-resolution semantic units of time series and employ
multi-periodic pattern mining to capture the key patterns of time series. Then,
we propose a channel adaptive module to capture the perceptions of multivariate
towards different patterns. In addition, we present an entropy-based method for
evaluating the predictability of time series and providing an upper bound on
the prediction accuracy before forecasting. Our experimental evaluation on nine
real-world benchmarks demonstrated that MPPN significantly outperforms the
state-of-the-art Transformer-based, decomposition-based and sampling-based
methods for long-term series forecasting.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
We propose a transformer-based encoder to achieve comprehensive temporal-interaction feature learning for each individual sample.
We conduct extensive experiments on 3 real-world datasets and validate that the proposed CoFormer significantly and consistently outperforms existing methods.
arXiv Detail & Related papers (2023-10-17T06:29:09Z) - Stecformer: Spatio-temporal Encoding Cascaded Transformer for
Multivariate Long-term Time Series Forecasting [11.021398675773055]
We propose a complete solution to address problems in terms of feature extraction and target prediction.
For extraction, we design an efficient-temporal encoding extractor including a semi-adaptive graph to acquire sufficient-temporal information.
For prediction, we propose a Cascaded De Predictor (CDP) to strengthen the correlation between different intervals.
arXiv Detail & Related papers (2023-05-25T13:00:46Z) - A Pattern Discovery Approach to Multivariate Time Series Forecasting [27.130141538089152]
State-of-the-art deep learning methods fail to construct models for full time series because model complexity grows exponentially with time series length.
We propose a novel pattern discovery method that can automatically capture diverse and complex time series patterns.
We also propose a learnable correlation matrix, that enables the model to capture distinct correlations among multiple time series.
arXiv Detail & Related papers (2022-12-20T14:54:04Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Monitoring Time Series With Missing Values: a Deep Probabilistic
Approach [1.90365714903665]
We introduce a new architecture for time series monitoring based on combination of state-of-the-art methods of forecasting in high-dimensional time series with full probabilistic handling of uncertainty.
We demonstrate advantage of the architecture for time series forecasting and novelty detection, in particular with partially missing data, and empirically evaluate and compare the architecture to state-of-the-art approaches on a real-world data set.
arXiv Detail & Related papers (2022-03-09T17:53:47Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
It is a common practice to evaluate multiple methods and choose one of these methods or an ensemble for producing the best forecasts.
We propose a framework for forecasting short high-dimensional time series data by combining low-rank temporal matrix factorization and optimal model selection on latent time series.
arXiv Detail & Related papers (2021-12-15T11:39:21Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
We propose a simple yet efficient instance-wise graph-based framework to utilize the inter-dependencies of different variables at different time stamps.
The key idea of our framework is aggregating information from the historical time series of different variables to the current time series that we need to forecast.
arXiv Detail & Related papers (2021-09-14T07:38:35Z) - Series Saliency: Temporal Interpretation for Multivariate Time Series
Forecasting [30.054015098590874]
We present the series saliency framework for temporal interpretation for time series forecasting.
By extracting the "series images" from the sliding windows of the time series, we apply the saliency map segmentation.
Our framework generates temporal interpretations for the time series forecasting task while produces accurate time series forecast.
arXiv Detail & Related papers (2020-12-16T23:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.