Scene Change Detection Using Multiscale Cascade Residual Convolutional
Neural Networks
- URL: http://arxiv.org/abs/2212.10417v1
- Date: Tue, 20 Dec 2022 16:48:51 GMT
- Title: Scene Change Detection Using Multiscale Cascade Residual Convolutional
Neural Networks
- Authors: Daniel F. S. Santos, Rafael G. Pires, Danilo Colombo, Jo\~ao P. Papa
- Abstract summary: Scene change detection is an image processing problem related to partitioning pixels of a digital image into foreground and background regions.
In this work, we propose a novel Multiscale Residual Processing Module, with a Convolutional Neural Network that integrates a Residual Processing Module.
Experiments conducted on two different datasets support the overall effectiveness of the proposed approach, achieving an average overall effectiveness of $boldsymbol0.9622$ and $boldsymbol0.9664$ over Change Detection 2014 and PetrobrasROUTES datasets respectively.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene change detection is an image processing problem related to partitioning
pixels of a digital image into foreground and background regions. Mostly,
visual knowledge-based computer intelligent systems, like traffic monitoring,
video surveillance, and anomaly detection, need to use change detection
techniques. Amongst the most prominent detection methods, there are the
learning-based ones, which besides sharing similar training and testing
protocols, differ from each other in terms of their architecture design
strategies. Such architecture design directly impacts on the quality of the
detection results, and also in the device resources capacity, like memory. In
this work, we propose a novel Multiscale Cascade Residual Convolutional Neural
Network that integrates multiscale processing strategy through a Residual
Processing Module, with a Segmentation Convolutional Neural Network.
Experiments conducted on two different datasets support the effectiveness of
the proposed approach, achieving average overall
$\boldsymbol{F\text{-}measure}$ results of $\boldsymbol{0.9622}$ and
$\boldsymbol{0.9664}$ over Change Detection 2014 and PetrobrasROUTES datasets
respectively, besides comprising approximately eight times fewer parameters.
Such obtained results place the proposed technique amongst the top four
state-of-the-art scene change detection methods.
Related papers
- Enhanced Wavelet Scattering Network for image inpainting detection [0.0]
This paper proposes several innovative ideas for detecting inpainting forgeries based on low level noise analysis.
It combines Dual-Tree Complex Wavelet Transform (DT-CWT) for feature extraction with convolutional neural networks (CNN) for forged area detection and localization.
Our approach was benchmarked against state-of-the-art methods and demonstrated superior performance over all cited alternatives.
arXiv Detail & Related papers (2024-09-25T15:27:05Z) - Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM) [0.0]
Change detection is a crucial task in remote sensing, enabling the monitoring of environmental changes, urban growth, and disaster impact.
Recent advancements in machine learning, particularly generative models like diffusion models, offer new opportunities for enhancing change detection accuracy.
We propose a novel change detection framework that combines the strengths of Stable Diffusion models with the Structural Similarity Index (SSIM) to create robust and interpretable change maps.
arXiv Detail & Related papers (2024-08-20T07:54:08Z) - Parameter-Inverted Image Pyramid Networks [49.35689698870247]
We propose a novel network architecture known as the Inverted Image Pyramid Networks (PIIP)
Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid.
PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification.
arXiv Detail & Related papers (2024-06-06T17:59:10Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
Face forgery recognition methods can only process one face at a time.
Most face forgery recognition methods can only process one face at a time.
We propose COMICS, an end-to-end framework for multi-face forgery detection.
arXiv Detail & Related papers (2023-08-03T03:37:13Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
We propose a novel Siamese neural network for change detection task, namely Dual-UNet.
In contrast to previous individually encoded the bitemporal images, we design an encoder differential-attention module to focus on the spatial difference relationships of pixels.
Experiments demonstrate that the proposed approach consistently outperforms the most advanced methods on popular seasonal change detection datasets.
arXiv Detail & Related papers (2022-08-12T14:24:09Z) - ObjectFormer for Image Manipulation Detection and Localization [118.89882740099137]
We propose ObjectFormer to detect and localize image manipulations.
We extract high-frequency features of the images and combine them with RGB features as multimodal patch embeddings.
We conduct extensive experiments on various datasets and the results verify the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-03-28T12:27:34Z) - LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution
Homography Estimation [52.63874513999119]
Cross-resolution image alignment is a key problem in multiscale giga photography.
Existing deep homography methods neglecting the explicit formulation of correspondences between them, which leads to degraded accuracy in cross-resolution challenges.
We propose a local transformer network embedded within a multiscale structure to explicitly learn correspondences between the multimodal inputs.
arXiv Detail & Related papers (2021-06-08T02:51:45Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Robust Unsupervised Small Area Change Detection from SAR Imagery Using
Deep Learning [23.203687716051697]
A robust unsupervised approach is proposed for small area change detection from synthetic aperture radar (SAR) images.
A multi-scale superpixel reconstruction method is developed to generate a difference image (DI)
A two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes.
arXiv Detail & Related papers (2020-11-22T12:50:08Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
Given two aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries.
This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management.
We present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures.
arXiv Detail & Related papers (2020-10-12T13:26:30Z) - Unsupervised Change Detection in Satellite Images with Generative
Adversarial Network [20.81970476609318]
We propose a novel change detection framework utilizing a special neural network architecture -- Generative Adversarial Network (GAN) to generate better coregistered images.
The optimized GAN model would produce better coregistered images where changes can be easily spotted and then the change map can be presented through a comparison strategy.
arXiv Detail & Related papers (2020-09-08T10:26:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.