論文の概要: Localising In-Domain Adaptation of Transformer-Based Biomedical Language
Models
- arxiv url: http://arxiv.org/abs/2212.10422v3
- Date: Wed, 28 Jun 2023 08:36:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-29 18:21:06.334133
- Title: Localising In-Domain Adaptation of Transformer-Based Biomedical Language
Models
- Title(参考訳): トランスフォーマーに基づくバイオメディカル言語モデルのドメイン内適応
- Authors: Tommaso Mario Buonocore, Claudio Crema, Alberto Redolfi, Riccardo
Bellazzi, Enea Parimbelli
- Abstract要約: 我々は、英語以外の言語で生物医学的言語モデルを導出するための2つのアプローチを提案する。
1つは、英語リソースのニューラルネットワーク翻訳に基づくもので、品質よりも量を好む。
もう一つは、イタリア語で書かれた高品位で細いスコープのコーパスに基づいており、量よりも質を優先している。
- 参考スコア(独自算出の注目度): 0.987336898133886
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the era of digital healthcare, the huge volumes of textual information
generated every day in hospitals constitute an essential but underused asset
that could be exploited with task-specific, fine-tuned biomedical language
representation models, improving patient care and management. For such
specialized domains, previous research has shown that fine-tuning models
stemming from broad-coverage checkpoints can largely benefit additional
training rounds over large-scale in-domain resources. However, these resources
are often unreachable for less-resourced languages like Italian, preventing
local medical institutions to employ in-domain adaptation. In order to reduce
this gap, our work investigates two accessible approaches to derive biomedical
language models in languages other than English, taking Italian as a concrete
use-case: one based on neural machine translation of English resources,
favoring quantity over quality; the other based on a high-grade, narrow-scoped
corpus natively written in Italian, thus preferring quality over quantity. Our
study shows that data quantity is a harder constraint than data quality for
biomedical adaptation, but the concatenation of high-quality data can improve
model performance even when dealing with relatively size-limited corpora. The
models published from our investigations have the potential to unlock important
research opportunities for Italian hospitals and academia. Finally, the set of
lessons learned from the study constitutes valuable insights towards a solution
to build biomedical language models that are generalizable to other
less-resourced languages and different domain settings.
- Abstract(参考訳): デジタル医療の時代には、病院で毎日生成される膨大なテキスト情報は、タスク固有の、微調整されたバイオメディカル言語表現モデル、患者のケアと管理の改善で活用できる、必須だが未使用の資産である。
このような特殊なドメインに対しては、広範囲のチェックポイントから派生した微調整モデルが、大規模なドメイン内リソースに対する追加のトレーニングラウンドに大きく貢献することを示した。
しかし、これらのリソースはイタリア語のような低リソース言語には到達できないことが多く、地元の医療機関がドメイン内適応を採用するのを妨げている。
このギャップを減らすために,我々の研究は,英語以外の言語で生物医学的言語モデルを導出するための2つのアプローチについて検討した。1つは,英語リソースのニューラルネットワーク翻訳に基づく,品質よりも量を重視する,もう1つは,イタリア語でネイティブに書かれたハイグレードで狭スコープのコーパスに基づく,量よりも品質を優先する,という,具体的なユースケースである。
本研究は, 生物医学的適応のためのデータ品質よりもデータ量に厳しい制約があることを示すが, 高品質なデータの結合は, 比較的サイズが制限されたコーパスを扱う場合でも, モデル性能を向上させることができる。
我々の調査から得られたモデルは、イタリアの病院やアカデミアにとって重要な研究機会を開放する可能性がある。
最後に、この研究から学んだ一連の教訓は、他の低リソース言語や異なるドメイン設定に一般化可能なバイオメディカル言語モデルを構築するためのソリューションに対する貴重な洞察を構成する。
関連論文リスト
- Towards Holistic Disease Risk Prediction using Small Language Models [2.137491464843808]
様々な病気のリスクを同時に予測することを目的とした,小言語モデルと複数のデータソースを接続するフレームワークを提案する。
本実験では,12種類のタスクをマルチタスク学習装置に組み込んだ。
論文 参考訳(メタデータ) (2024-08-13T15:01:33Z) - Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian [75.94354349994576]
本稿では,より小型のドメイン固有エンコーダ LM と,特殊なコンテキストにおける性能向上手法の併用の可能性について検討する。
本研究は, イタリアの官僚的・法的言語に焦点をあて, 汎用モデルと事前学習型エンコーダのみのモデルの両方を実験する。
その結果, 事前学習したモデルでは, 一般知識の頑健性が低下する可能性があるが, ドメイン固有のタスクに対して, ゼロショット設定においても, より優れた適応性を示すことがわかった。
論文 参考訳(メタデータ) (2024-07-30T08:50:16Z) - Evaluation of Language Models in the Medical Context Under Resource-Constrained Settings [10.39989311209284]
医療分野における言語モデルに関する総合的な調査を行った。
医療用テキスト分類と条件付きテキスト生成のためのサブセットの評価を行った。
その結果、タスク全体での顕著なパフォーマンスが明らかとなり、特定のモデルが医療知識を含む可能性について評価された。
論文 参考訳(メタデータ) (2024-06-24T12:52:02Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - DAEDRA: A language model for predicting outcomes in passive
pharmacovigilance reporting [0.0]
DAEDRAは、有害事象報告における規制関連結果を検出するために設計された大きな言語モデルである。
本稿では,DAEDRAの概念,設計,訓練,評価について述べる。
論文 参考訳(メタデータ) (2024-02-10T16:48:45Z) - MedEval: A Multi-Level, Multi-Task, and Multi-Domain Medical Benchmark
for Language Model Evaluation [22.986061896641083]
MedEvalは、医療のための言語モデルの開発を促進するために、マルチレベル、マルチタスク、マルチドメインの医療ベンチマークである。
22,779の文と21,228のレポートを収集し、専門家のアノテーションを複数のレベルで提供し、データの詳細な使用可能性を提供します。
論文 参考訳(メタデータ) (2023-10-21T18:59:41Z) - Towards Best Practices for Training Multilingual Dense Retrieval Models [54.91016739123398]
我々は,このような設計を用いて,多種多様言語における単言語検索の課題に焦点をあてる。
本研究は多言語高密度検索モデルのトレーニングのための「ベストプラクティス」ガイドとして組織されている。
論文 参考訳(メタデータ) (2022-04-05T17:12:53Z) - Biomedical and Clinical Language Models for Spanish: On the Benefits of
Domain-Specific Pretraining in a Mid-Resource Scenario [0.05277024349608833]
本研究は, 異なる事前学習選択を実験することにより, スペイン語の生物医学的, 臨床的言語モデルを示す。
モデルをスクラッチからトレーニングするための十分な臨床データがないため,混合ドメイン事前訓練法とクロスドメイン移行法を適用し,優れたバイオクリニカルモデルを構築した。
論文 参考訳(メタデータ) (2021-09-08T12:12:07Z) - Learning Domain-Specialised Representations for Cross-Lingual Biomedical
Entity Linking [66.76141128555099]
言語横断型バイオメディカルエンティティリンクタスク(XL-BEL)を提案する。
まず、標準単言語英語BELタスクを超えて、標準単言語および多言語LMと同様に、標準的な知識に依存しない能力について検討する。
次に、リソースに富んだ言語からリソースに乏しい言語にドメイン固有の知識を移すことの課題に対処する。
論文 参考訳(メタデータ) (2021-05-30T00:50:00Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
バイオメディシンなどのラベルなしテキストの少ないドメインでは、スクラッチから言語モデルを事前学習することで、かなりの利益が得られることを示す。
実験の結果, ドメイン固有のプレトレーニングは, 幅広い生物医学的NLPタスクの基盤となることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-31T00:04:15Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。