Generalized Simultaneous Perturbation-based Gradient Search with Reduced
Estimator Bias
- URL: http://arxiv.org/abs/2212.10477v2
- Date: Sun, 12 Nov 2023 18:27:05 GMT
- Title: Generalized Simultaneous Perturbation-based Gradient Search with Reduced
Estimator Bias
- Authors: Soumen Pachal, Shalabh Bhatnagar and L.A. Prashanth
- Abstract summary: We present a family of generalized simultaneous perturbation-based search (GSPGS) estimators that use noisy function measurements.
The number of function measurements required by each estimator is guided by the desired level of accuracy.
- Score: 7.372983005764439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present in this paper a family of generalized simultaneous
perturbation-based gradient search (GSPGS) estimators that use noisy function
measurements. The number of function measurements required by each estimator is
guided by the desired level of accuracy. We first present in detail unbalanced
generalized simultaneous perturbation stochastic approximation (GSPSA)
estimators and later present the balanced versions (B-GSPSA) of these. We
extend this idea further and present the generalized smoothed functional (GSF)
and generalized random directions stochastic approximation (GRDSA) estimators,
respectively, as well as their balanced variants. We show that estimators
within any specified class requiring more number of function measurements
result in lower estimator bias. We present a detailed analysis of both the
asymptotic and non-asymptotic convergence of the resulting stochastic
approximation schemes. We further present a series of experimental results with
the various GSPGS estimators on the Rastrigin and quadratic function
objectives. Our experiments are seen to validate our theoretical findings.
Related papers
- Estimating Generalization Performance Along the Trajectory of Proximal SGD in Robust Regression [4.150180443030652]
We introduce estimators that precisely track the generalization error of the iterates along the trajectory of the iterative algorithm.
The results are illustrated through several examples, including Huber regression, pseudo-Huber regression, and their penalized variants with non-smooth regularizer.
arXiv Detail & Related papers (2024-10-03T16:13:42Z) - Method-of-Moments Inference for GLMs and Doubly Robust Functionals under Proportional Asymptotics [30.324051162373973]
We consider the estimation of regression coefficients and signal-to-noise ratio in high-dimensional Generalized Linear Models (GLMs)
We derive Consistent and Asymptotically Normal (CAN) estimators of our targets of inference.
We complement our theoretical results with numerical experiments and comparisons with existing literature.
arXiv Detail & Related papers (2024-08-12T12:43:30Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation [0.8192907805418583]
We show that biased gradients converge to critical points for smooth non- functions.
We show how the effect of bias can be reduced by appropriate tuning.
arXiv Detail & Related papers (2024-02-05T10:17:36Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Double Descent in Random Feature Models: Precise Asymptotic Analysis for
General Convex Regularization [4.8900735721275055]
We provide precise expressions for the generalization of regression under a broad class of convex regularization terms.
We numerically demonstrate the predictive capacity of our framework, and show experimentally that the predicted test error is accurate even in the non-asymptotic regime.
arXiv Detail & Related papers (2022-04-06T08:59:38Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications [0.6445605125467573]
gradient estimation is of crucial importance in statistics and learning theory.
We consider here the classic regression setup, where a real valued square integrable r.v. $Y$ is to be predicted.
We prove nonasymptotic bounds improving upon those obtained for alternative estimation methods.
arXiv Detail & Related papers (2020-06-26T15:19:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.