Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications
- URL: http://arxiv.org/abs/2006.15043v1
- Date: Fri, 26 Jun 2020 15:19:43 GMT
- Title: Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications
- Authors: Guillaume Ausset, Stephan Cl\'emen\c{c}on, Fran\c{c}ois Portier
- Abstract summary: gradient estimation is of crucial importance in statistics and learning theory.
We consider here the classic regression setup, where a real valued square integrable r.v. $Y$ is to be predicted.
We prove nonasymptotic bounds improving upon those obtained for alternative estimation methods.
- Score: 0.6445605125467573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by a wide variety of applications, ranging from stochastic
optimization to dimension reduction through variable selection, the problem of
estimating gradients accurately is of crucial importance in statistics and
learning theory. We consider here the classic regression setup, where a real
valued square integrable r.v. $Y$ is to be predicted upon observing a (possibly
high dimensional) random vector $X$ by means of a predictive function $f(X)$ as
accurately as possible in the mean-squared sense and study a
nearest-neighbour-based pointwise estimate of the gradient of the optimal
predictive function, the regression function $m(x)=\mathbb{E}[Y\mid X=x]$.
Under classic smoothness conditions combined with the assumption that the tails
of $Y-m(X)$ are sub-Gaussian, we prove nonasymptotic bounds improving upon
those obtained for alternative estimation methods. Beyond the novel theoretical
results established, several illustrative numerical experiments have been
carried out. The latter provide strong empirical evidence that the estimation
method proposed works very well for various statistical problems involving
gradient estimation, namely dimensionality reduction, stochastic gradient
descent optimization and quantifying disentanglement.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - On the Stochastic (Variance-Reduced) Proximal Gradient Method for Regularized Expected Reward Optimization [10.36447258513813]
We consider a regularized expected reward optimization problem in the non-oblivious setting that covers many existing problems in reinforcement learning (RL)
In particular, the method has shown to admit an $O(epsilon-4)$ sample to an $epsilon$-stationary point, under standard conditions.
Our analysis shows that the sample complexity can be improved from $O(epsilon-4)$ to $O(epsilon-3)$ under additional conditions.
arXiv Detail & Related papers (2024-01-23T06:01:29Z) - Unbiased Kinetic Langevin Monte Carlo with Inexact Gradients [0.8749675983608172]
We present an unbiased method for posterior means based on kinetic Langevin dynamics.
Our proposed estimator is unbiased, attains finite variance, and satisfies a central limit theorem.
Our results demonstrate that in large-scale applications, the unbiased algorithm we present can be 2-3 orders of magnitude more efficient than the gold-standard" randomized Hamiltonian Monte Carlo.
arXiv Detail & Related papers (2023-11-08T21:19:52Z) - One-step corrected projected stochastic gradient descent for statistical estimation [49.1574468325115]
It is based on the projected gradient descent on the log-likelihood function corrected by a single step of the Fisher scoring algorithm.
We show theoretically and by simulations that it is an interesting alternative to the usual gradient descent with averaging or the adaptative gradient descent.
arXiv Detail & Related papers (2023-06-09T13:43:07Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - High-probability Bounds for Non-Convex Stochastic Optimization with
Heavy Tails [55.561406656549686]
We consider non- Hilbert optimization using first-order algorithms for which the gradient estimates may have tails.
We show that a combination of gradient, momentum, and normalized gradient descent convergence to critical points in high-probability with best-known iteration for smooth losses.
arXiv Detail & Related papers (2021-06-28T00:17:01Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Generalized Gumbel-Softmax Gradient Estimator for Various Discrete
Random Variables [16.643346012854156]
Esting the gradients of nodes is one of the crucial research questions in the deep generative modeling community.
This paper proposes a general version of the Gumbel-Softmax estimator with continuous relaxation.
arXiv Detail & Related papers (2020-03-04T01:13:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.