論文の概要: Semantically-informed Hierarchical Event Modeling
- arxiv url: http://arxiv.org/abs/2212.10547v1
- Date: Tue, 20 Dec 2022 18:51:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 16:06:05.332404
- Title: Semantically-informed Hierarchical Event Modeling
- Title(参考訳): 意味的インフォームド階層型イベントモデリング
- Authors: Shubhashis Roy Dipta, Mehdi Rezaee, Francis Feraro
- Abstract要約: 本稿では,2つの階層的な半教師付きイベントモデリングフレームワークを提案する。
提案手法は,各層が前の層を圧縮・抽象化する,構造化潜在変数の複数の層から構成される。
われわれの手法が従来の最先端のアプローチより優れていることを実証する。
- 参考スコア(独自算出の注目度): 5.156484100374058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior work has shown that coupling sequential latent variable models with
semantic ontological knowledge can improve the representational capabilities of
event modeling approaches. In this work, we present a novel, doubly
hierarchical, semi-supervised event modeling framework that provides structural
hierarchy while also accounting for ontological hierarchy. Our approach
consists of multiple layers of structured latent variables, where each
successive layer compresses and abstracts the previous layers. We guide this
compression through the injection of structured ontological knowledge that is
defined at the type level of events: importantly, our model allows for partial
injection of semantic knowledge and it does not depend on observing instances
at any particular level of the semantic ontology. Across two different datasets
and four different evaluation metrics, we demonstrate that our approach is able
to out-perform the previous state-of-the-art approaches, demonstrating the
benefits of structured and semantic hierarchical knowledge for event modeling.
- Abstract(参考訳): 先行研究は、逐次潜在変数モデルと意味的存在論的知識を結合させることで、イベントモデリングアプローチの表現能力を向上させることを示した。
本稿では,オントロジー階層を考慮しながら構造階層を提供する,新しい,二重階層的,半教師付きイベントモデリングフレームワークを提案する。
提案手法は,各層が前の層を圧縮・抽象化する,構造化潜在変数の複数の層から構成される。
私たちは、イベントのタイプレベルで定義された構造化オントロジー知識の注入を通じて、この圧縮を導く: 重要なことに、このモデルは、意味知識の部分的注入を可能にし、セマンティックオントロジーの特定のレベルでのインスタンスの観察に依存しません。
2つの異なるデータセットと4つの異なる評価指標で、我々のアプローチが過去の最先端のアプローチよりも優れており、イベントモデリングにおける構造化およびセマンティック階層的知識の利点を実証している。
関連論文リスト
- Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - Unified View of Grokking, Double Descent and Emergent Abilities: A
Perspective from Circuits Competition [83.13280812128411]
近年の研究では、グラッキング、二重降下、大規模言語モデルにおける創発的能力など、ディープラーニングにおける興味深い現象が明らかにされている。
本稿では,記憶回路と一般化回路の競合に着目し,これら3つの現象の統一的な見方を提供する包括的枠組みを提案する。
論文 参考訳(メタデータ) (2024-02-23T08:14:36Z) - Learning Hierarchical Features with Joint Latent Space Energy-Based
Prior [44.4434704520236]
階層表現学習における多層ジェネレータモデルの基本的問題について検討する。
実効的階層型表現学習のための多層潜在変数を用いた有意な潜在空間EMM事前モデルを提案する。
論文 参考訳(メタデータ) (2023-10-14T15:44:14Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
本稿では, PLM を用いた自己回帰的手法を用いて, モデル構造を行動列として記述する。
我々のアプローチは、私たちが見てきた全ての構造化予測タスクにおいて、新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-10-26T13:27:26Z) - Hierarchical Variational Memory for Few-shot Learning Across Domains [120.87679627651153]
本稿では,プロトタイプの各レベルが階層メモリから対応する情報を取得する階層型プロトタイプモデルを提案する。
このモデルには、ドメインシフトの状況が要求される場合、異なるセマンティックレベルの機能を柔軟に依存する能力が備わっている。
モデルにおける各コンポーネントの有効性を示すために、徹底的なアブレーション研究を行っている。
論文 参考訳(メタデータ) (2021-12-15T15:01:29Z) - Decomposing and Recomposing Event Structure [4.270553193574436]
これをrole、entity type、event-level semantic graphと共同で導入する。
従来の理論的動機付けされた文書レベルの生成モデルと密接に一致した型群を同定する。
論文 参考訳(メタデータ) (2021-03-18T17:16:43Z) - Learning to Abstract and Predict Human Actions [60.85905430007731]
ビデオにおける人間の活動の階層構造をモデル化し,行動予測におけるそのような構造の効果を実証する。
イベントの部分的階層を観察し、その構造を複数の抽象化レベルで将来の予測にロールアウトすることで、人間の活動の構造を学習できる階層型ニューラルネットワークであるHierarchical-Refresher-Anticipatorを提案する。
論文 参考訳(メタデータ) (2020-08-20T23:57:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。