ZEROTOP: Zero-Shot Task-Oriented Semantic Parsing using Large Language
Models
- URL: http://arxiv.org/abs/2212.10815v1
- Date: Wed, 21 Dec 2022 07:06:55 GMT
- Title: ZEROTOP: Zero-Shot Task-Oriented Semantic Parsing using Large Language
Models
- Authors: Dheeraj Mekala, Jason Wolfe, Subhro Roy
- Abstract summary: We propose ZEROTOP, a zero-shot task-oriented parsing method that decomposes a semantic parsing problem into a set of abstractive and extractive question-answering problems.
We show that our QA-based decomposition paired with the fine-tuned LLM can correctly parse 16% of utterances in the MTOP dataset without requiring any annotated data.
- Score: 6.13621607944513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the use of large language models (LLMs) for zero-shot semantic
parsing. Semantic parsing involves mapping natural language utterances to
task-specific meaning representations. Language models are generally trained on
the publicly available text and code and cannot be expected to directly
generalize to domain-specific parsing tasks in a zero-shot setting. In this
work, we propose ZEROTOP, a zero-shot task-oriented parsing method that
decomposes a semantic parsing problem into a set of abstractive and extractive
question-answering (QA) problems, enabling us to leverage the ability of LLMs
to zero-shot answer reading comprehension questions. For each utterance, we
prompt the LLM with questions corresponding to its top-level intent and a set
of slots and use the LLM generations to construct the target meaning
representation. We observe that current LLMs fail to detect unanswerable
questions; and as a result, cannot handle questions corresponding to missing
slots. To address this problem, we fine-tune a language model on public QA
datasets using synthetic negative samples. Experimental results show that our
QA-based decomposition paired with the fine-tuned LLM can correctly parse ~16%
of utterances in the MTOP dataset without requiring any annotated data.
Related papers
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Look Before You Leap: A Universal Emergent Decomposition of Retrieval
Tasks in Language Models [58.57279229066477]
We study how language models (LMs) solve retrieval tasks in diverse situations.
We introduce ORION, a collection of structured retrieval tasks spanning six domains.
We find that LMs internally decompose retrieval tasks in a modular way.
arXiv Detail & Related papers (2023-12-13T18:36:43Z) - Improving Zero-shot Visual Question Answering via Large Language Models
with Reasoning Question Prompts [22.669502403623166]
We present Reasoning Question Prompts for VQA tasks, which can further activate the potential of Large Language Models.
We generate self-contained questions as reasoning question prompts via an unsupervised question edition module.
Each reasoning question prompt clearly indicates the intent of the original question.
Then, the candidate answers associated with their confidence scores acting as answer integritys are fed into LLMs.
arXiv Detail & Related papers (2023-11-15T15:40:46Z) - Rephrase, Augment, Reason: Visual Grounding of Questions for Vision-Language Models [59.05769810380928]
Rephrase, Augment and Reason (RepARe) is a gradient-free framework that extracts salient details about the image using the underlying vision-language model.
We show that RepARe can result in a 3.85% (absolute) increase in zero-shot accuracy on VQAv2, 6.41%, and 7.94% points increase on A-OKVQA, and VizWiz respectively.
arXiv Detail & Related papers (2023-10-09T16:57:57Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
Relation extraction (RE) consistently involves a certain degree of labeled or unlabeled data even if under zero-shot setting.
Recent studies have shown that large language models (LLMs) transfer well to new tasks out-of-the-box simply given a natural language prompt.
This work focuses on the study of exploring LLMs as zero-shot relation extractors.
arXiv Detail & Related papers (2023-10-08T06:17:39Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
In this work, we propose a novel method called ALLIES.
Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query.
By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly through retrieval.
arXiv Detail & Related papers (2023-05-24T06:16:44Z) - From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language
Models [111.42052290293965]
Large language models (LLMs) have demonstrated excellent zero-shot generalization to new language tasks.
End-to-end training on vision and language data may bridge the disconnections, but is inflexible and computationally expensive.
We propose emphImg2Prompt, a plug-and-play module that provides the prompts that can bridge the aforementioned modality and task disconnections.
arXiv Detail & Related papers (2022-12-21T08:39:36Z) - Self-Prompting Large Language Models for Zero-Shot Open-Domain QA [67.08732962244301]
Open-Domain Question Answering (ODQA) aims to answer questions without explicitly providing background documents.
This task becomes notably challenging in a zero-shot setting where no data is available to train tailored retrieval-reader models.
We propose a Self-Prompting framework to explicitly utilize the massive knowledge encoded in the parameters of Large Language Models.
arXiv Detail & Related papers (2022-12-16T18:23:43Z) - Large Language Models are Zero-Shot Reasoners [28.6899375595088]
Chain of thought (CoT) prompting is a technique for eliciting complex multi-step reasoning through step-by-step answer examples.
We show that LLMs are decent zero-shot reasoners by simply adding Let's think step by step'' before each answer.
Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances.
arXiv Detail & Related papers (2022-05-24T09:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.