Rephrase, Augment, Reason: Visual Grounding of Questions for Vision-Language Models
- URL: http://arxiv.org/abs/2310.05861v2
- Date: Tue, 2 Apr 2024 17:37:42 GMT
- Title: Rephrase, Augment, Reason: Visual Grounding of Questions for Vision-Language Models
- Authors: Archiki Prasad, Elias Stengel-Eskin, Mohit Bansal,
- Abstract summary: Rephrase, Augment and Reason (RepARe) is a gradient-free framework that extracts salient details about the image using the underlying vision-language model.
We show that RepARe can result in a 3.85% (absolute) increase in zero-shot accuracy on VQAv2, 6.41%, and 7.94% points increase on A-OKVQA, and VizWiz respectively.
- Score: 59.05769810380928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An increasing number of vision-language tasks can be handled with little to no training, i.e., in a zero and few-shot manner, by marrying large language models (LLMs) to vision encoders, resulting in large vision-language models (LVLMs). While this has huge upsides, such as not requiring training data or custom architectures, how an input is presented to an LVLM can have a major impact on zero-shot model performance. In particular, inputs phrased in an underspecified way can result in incorrect answers due to factors like missing visual information, complex implicit reasoning, or linguistic ambiguity. Therefore, adding visually-grounded information to the input as a preemptive clarification should improve model performance by reducing underspecification, e.g., by localizing objects and disambiguating references. Similarly, in the VQA setting, changing the way questions are framed can make them easier for models to answer. To this end, we present Rephrase, Augment and Reason (RepARe), a gradient-free framework that extracts salient details about the image using the underlying LVLM as a captioner and reasoner, in order to propose modifications to the original question. We then use the LVLM's confidence over a generated answer as an unsupervised scoring function to select the rephrased question most likely to improve zero-shot performance. Focusing on three visual question answering tasks, we show that RepARe can result in a 3.85% (absolute) increase in zero-shot accuracy on VQAv2, 6.41%, and 7.94% points increase on A-OKVQA, and VizWiz respectively. Additionally, we find that using gold answers for oracle question candidate selection achieves a substantial gain in VQA accuracy by up to 14.41%. Through extensive analysis, we demonstrate that outputs from RepARe increase syntactic complexity, and effectively utilize vision-language interaction and the frozen LLM.
Related papers
- Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
Question-Driven Visual Exploration (QVix) is a novel prompting strategy that enhances the exploratory capabilities of large vision-language models (LVLMs)
QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment.
Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods.
arXiv Detail & Related papers (2023-12-04T03:18:51Z) - Filling the Image Information Gap for VQA: Prompting Large Language
Models to Proactively Ask Questions [15.262736501208467]
Large Language Models (LLMs) demonstrate impressive reasoning ability and the maintenance of world knowledge.
As images are invisible to LLMs, researchers convert images to text to engage LLMs into the visual question reasoning procedure.
We design a framework that enables LLMs to proactively ask relevant questions to unveil more details in the image.
arXiv Detail & Related papers (2023-11-20T08:23:39Z) - Improving Zero-shot Visual Question Answering via Large Language Models
with Reasoning Question Prompts [22.669502403623166]
We present Reasoning Question Prompts for VQA tasks, which can further activate the potential of Large Language Models.
We generate self-contained questions as reasoning question prompts via an unsupervised question edition module.
Each reasoning question prompt clearly indicates the intent of the original question.
Then, the candidate answers associated with their confidence scores acting as answer integritys are fed into LLMs.
arXiv Detail & Related papers (2023-11-15T15:40:46Z) - Towards Perceiving Small Visual Details in Zero-shot Visual Question
Answering with Multimodal LLMs [12.598351373932234]
We investigate whether MLLMs can perceive small details as well as large details in images.
We show that their zero-shot accuracy in answering visual questions is very sensitive to the size of the visual subject of the question.
We propose five automatic visual cropping methods to improve the zero-shot performance of MLLMs.
arXiv Detail & Related papers (2023-10-24T17:48:04Z) - UniFine: A Unified and Fine-grained Approach for Zero-shot
Vision-Language Understanding [84.83494254263138]
We propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning.
Our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR.
arXiv Detail & Related papers (2023-07-03T09:03:12Z) - Investigating Prompting Techniques for Zero- and Few-Shot Visual
Question Answering [7.640416680391081]
In this paper, we explore effective prompting techniques to enhance zero- and few-shot Visual Question Answering (VQA) performance.
We identify that specific templates significantly influence VQA outcomes, underscoring the need for strategic template selection.
To mitigate the challenges associated with evaluating free-form open-ended VQA responses, we introduce a straightforward LLM-guided pre-processing technique.
arXiv Detail & Related papers (2023-06-16T17:47:57Z) - See, Think, Confirm: Interactive Prompting Between Vision and Language
Models for Knowledge-based Visual Reasoning [60.43585179885355]
We propose a novel framework named Interactive Prompting Visual Reasoner (IPVR) for few-shot knowledge-based visual reasoning.
IPVR contains three stages, see, think and confirm.
We conduct experiments on a range of knowledge-based visual reasoning datasets.
arXiv Detail & Related papers (2023-01-12T18:59:50Z) - From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language
Models [111.42052290293965]
Large language models (LLMs) have demonstrated excellent zero-shot generalization to new language tasks.
End-to-end training on vision and language data may bridge the disconnections, but is inflexible and computationally expensive.
We propose emphImg2Prompt, a plug-and-play module that provides the prompts that can bridge the aforementioned modality and task disconnections.
arXiv Detail & Related papers (2022-12-21T08:39:36Z) - A Good Prompt Is Worth Millions of Parameters? Low-resource Prompt-based
Learning for Vision-Language Models [50.27305012063483]
FewVLM is a few-shot prompt-based learner on vision-language tasks.
We pretrain a sequence-to-sequence Transformer model with both prefix language modeling (PrefixLM) and masked language modeling (MaskedLM)
We observe that prompts significantly affect zero-shot performance but marginally affect few-shot performance.
arXiv Detail & Related papers (2021-10-16T06:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.