VCNet: A self-explaining model for realistic counterfactual generation
- URL: http://arxiv.org/abs/2212.10847v1
- Date: Wed, 21 Dec 2022 08:45:32 GMT
- Title: VCNet: A self-explaining model for realistic counterfactual generation
- Authors: Victor Guyomard, Fran\c{c}oise Fessant, Thomas Guyet (BEAGLE),
Tassadit Bouadi (LACODAM, UR1), Alexandre Termier (LACODAM, UR1)
- Abstract summary: Counterfactual explanation is a class of methods to make local explanations of machine learning decisions.
We present VCNet-Variational Counter Net, a model architecture that combines a predictor and a counterfactual generator.
We show that VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem.
- Score: 52.77024349608834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual explanation is a common class of methods to make local
explanations of machine learning decisions. For a given instance, these methods
aim to find the smallest modification of feature values that changes the
predicted decision made by a machine learning model. One of the challenges of
counterfactual explanation is the efficient generation of realistic
counterfactuals. To address this challenge, we propose VCNet-Variational
Counter Net-a model architecture that combines a predictor and a counterfactual
generator that are jointly trained, for regression or classification tasks.
VCNet is able to both generate predictions, and to generate counterfactual
explanations without having to solve another minimisation problem. Our
contribution is the generation of counterfactuals that are close to the
distribution of the predicted class. This is done by learning a variational
autoencoder conditionally to the output of the predictor in a join-training
fashion. We present an empirical evaluation on tabular datasets and across
several interpretability metrics. The results are competitive with the
state-of-the-art method.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Generating collective counterfactual explanations in score-based
classification via mathematical optimization [4.281723404774889]
A counterfactual explanation of an instance indicates how this instance should be minimally modified so that the perturbed instance is classified in the desired class.
Most of the Counterfactual Analysis literature focuses on the single-instance single-counterfactual setting.
By means of novel Mathematical Optimization models, we provide a counterfactual explanation for each instance in a group of interest.
arXiv Detail & Related papers (2023-10-19T15:18:42Z) - Semi-supervised counterfactual explanations [3.6810543937967912]
We address the challenge of generating counterfactual explanations that lie in the same data distribution as that of the training data.
This requirement has been addressed through the incorporation of auto-encoder reconstruction loss in the counterfactual search process.
We show further improvement in the interpretability of counterfactual explanations when the auto-encoder is trained in a semi-supervised fashion with class tagged input data.
arXiv Detail & Related papers (2023-03-22T15:17:16Z) - Stochastic Deep Networks with Linear Competing Units for Model-Agnostic
Meta-Learning [4.97235247328373]
This work addresses meta-learning (ML) by considering deep networks with local winner-takes-all (LWTA) activations.
This type of network units results in sparse representations from each model layer, as the units are organized into blocks where only one unit generates a non-zero output.
Our approach produces state-of-the-art predictive accuracy on few-shot image classification and regression experiments, as well as reduced predictive error on an active learning setting.
arXiv Detail & Related papers (2022-08-02T16:19:54Z) - Value-Consistent Representation Learning for Data-Efficient
Reinforcement Learning [105.70602423944148]
We propose a novel method, called value-consistent representation learning (VCR), to learn representations that are directly related to decision-making.
Instead of aligning this imagined state with a real state returned by the environment, VCR applies a $Q$-value head on both states and obtains two distributions of action values.
It has been demonstrated that our methods achieve new state-of-the-art performance for search-free RL algorithms.
arXiv Detail & Related papers (2022-06-25T03:02:25Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - CounterNet: End-to-End Training of Prediction Aware Counterfactual
Explanations [12.313007847721215]
CounterNet is an end-to-end learning framework which integrates predictive model training and the generation of counterfactual (CF) explanations.
Unlike post-hoc methods, CounterNet enables the optimization of the CF explanation generation only once together with the predictive model.
Our experiments on multiple real-world datasets show that CounterNet generates high-quality predictions.
arXiv Detail & Related papers (2021-09-15T20:09:13Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Identifying and Compensating for Feature Deviation in Imbalanced Deep
Learning [59.65752299209042]
We investigate learning a ConvNet under such a scenario.
We found that a ConvNet significantly over-fits the minor classes.
We propose to incorporate class-dependent temperatures (CDT) training ConvNet.
arXiv Detail & Related papers (2020-01-06T03:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.