Exploring Energy Landscapes for Minimal Counterfactual Explanations: Applications in Cybersecurity and Beyond
- URL: http://arxiv.org/abs/2503.18185v1
- Date: Sun, 23 Mar 2025 19:48:37 GMT
- Title: Exploring Energy Landscapes for Minimal Counterfactual Explanations: Applications in Cybersecurity and Beyond
- Authors: Spyridon Evangelatos, Eleni Veroni, Vasilis Efthymiou, Christos Nikolopoulos, Georgios Th. Papadopoulos, Panagiotis Sarigiannidis,
- Abstract summary: Counterfactual explanations have emerged as a prominent method in Explainable Artificial Intelligence (XAI)<n>We present a novel framework that integrates perturbation theory and statistical mechanics to generate minimal counterfactual explanations.<n>Our approach systematically identifies the smallest modifications required to change a model's prediction while maintaining plausibility.
- Score: 3.6963146054309597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual explanations have emerged as a prominent method in Explainable Artificial Intelligence (XAI), providing intuitive and actionable insights into Machine Learning model decisions. In contrast to other traditional feature attribution methods that assess the importance of input variables, counterfactual explanations focus on identifying the minimal changes required to alter a model's prediction, offering a ``what-if'' analysis that is close to human reasoning. In the context of XAI, counterfactuals enhance transparency, trustworthiness and fairness, offering explanations that are not just interpretable but directly applicable in the decision-making processes. In this paper, we present a novel framework that integrates perturbation theory and statistical mechanics to generate minimal counterfactual explanations in explainable AI. We employ a local Taylor expansion of a Machine Learning model's predictive function and reformulate the counterfactual search as an energy minimization problem over a complex landscape. In sequence, we model the probability of candidate perturbations leveraging the Boltzmann distribution and use simulated annealing for iterative refinement. Our approach systematically identifies the smallest modifications required to change a model's prediction while maintaining plausibility. Experimental results on benchmark datasets for cybersecurity in Internet of Things environments, demonstrate that our method provides actionable, interpretable counterfactuals and offers deeper insights into model sensitivity and decision boundaries in high-dimensional spaces.
Related papers
- Scene-Aware Explainable Multimodal Trajectory Prediction [15.58042746234974]
We introduce the Explainable Conditional Diffusion-based Multimodal Trajectory Prediction (DMTP) model.
Our model integrates a modified conditional diffusion approach to capture multimodal trajectory patterns and employs a revised Shapley Value model to assess the significance of global and scenario-specific features.
Experiments demonstrate that our explainable model excels in identifying critical inputs and significantly outperforms baseline models in accuracy.
arXiv Detail & Related papers (2024-10-22T08:17:33Z) - When Can You Trust Your Explanations? A Robustness Analysis on Feature Importances [42.36530107262305]
robustness of explanations plays a central role in ensuring trust in both the system and the provided explanation.
We propose a novel approach to analyse the robustness of neural network explanations to non-adversarial perturbations.
We additionally present an ensemble method to aggregate various explanations, showing how merging explanations can be beneficial for both understanding the model's decision and evaluating the robustness.
arXiv Detail & Related papers (2024-06-20T14:17:57Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
We propose a novel method to enhance explainability with minimal accuracy loss.
We have developed novel methods for estimating nodes by leveraging AI techniques.
Our findings highlight the critical role that statistical methodologies can play in advancing explainable AI.
arXiv Detail & Related papers (2024-06-16T14:43:01Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
We introduce LaPLACE-explainer, designed to provide probabilistic cause-and-effect explanations for machine learning models.
The LaPLACE-Explainer component leverages the concept of a Markov blanket to establish statistical boundaries between relevant and non-relevant features.
Our approach offers causal explanations and outperforms LIME and SHAP in terms of local accuracy and consistency of explained features.
arXiv Detail & Related papers (2023-10-01T04:09:59Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Explaining and visualizing black-box models through counterfactual paths [5.930734371401315]
We propose a novel approach to explainable AI (XAI) that uses the so-called counterfactual paths generated by conditional permutations of features.
The algorithm measures feature importance by identifying sequential permutations of features that most influence changes in model predictions.
It is particularly suitable for generating explanations based on counterfactual paths in knowledge graphs incorporating domain knowledge.
arXiv Detail & Related papers (2023-07-15T10:16:51Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
Counterfactual explanation is a class of methods to make local explanations of machine learning decisions.
We present VCNet-Variational Counter Net, a model architecture that combines a predictor and a counterfactual generator.
We show that VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem.
arXiv Detail & Related papers (2022-12-21T08:45:32Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.