論文の概要: Automatic Network Adaptation for Ultra-Low Uniform-Precision
Quantization
- arxiv url: http://arxiv.org/abs/2212.10878v1
- Date: Wed, 21 Dec 2022 09:41:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 13:51:18.132044
- Title: Automatic Network Adaptation for Ultra-Low Uniform-Precision
Quantization
- Title(参考訳): 超低一様精度量子化のためのネットワーク自動適応
- Authors: Seongmin Park, Beomseok Kwon, Jieun Lim, Kyuyoung Sim, Taeho Kim and
Jungwook Choi
- Abstract要約: 一様精度ニューラルネットワーク量子化は、高計算能力のために高密度に充填された演算ユニットを単純化したため、人気を集めている。
層間の量子化誤差の影響に対して不均一な感度を無視し、結果として準最適推論をもたらす。
本研究は,超低精度量子化による精度劣化を軽減するために,ニューラルネットワーク構造を調整するニューラルチャネル拡張と呼ばれる新しいニューラルアーキテクチャ探索を提案する。
- 参考スコア(独自算出の注目度): 6.1664476076961146
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Uniform-precision neural network quantization has gained popularity since it
simplifies densely packed arithmetic unit for high computing capability.
However, it ignores heterogeneous sensitivity to the impact of quantization
errors across the layers, resulting in sub-optimal inference accuracy. This
work proposes a novel neural architecture search called neural channel
expansion that adjusts the network structure to alleviate accuracy degradation
from ultra-low uniform-precision quantization. The proposed method selectively
expands channels for the quantization sensitive layers while satisfying
hardware constraints (e.g., FLOPs, PARAMs). Based on in-depth analysis and
experiments, we demonstrate that the proposed method can adapt several popular
networks channels to achieve superior 2-bit quantization accuracy on CIFAR10
and ImageNet. In particular, we achieve the best-to-date Top-1/Top-5 accuracy
for 2-bit ResNet50 with smaller FLOPs and the parameter size.
- Abstract(参考訳): 一様精度ニューラルネットワーク量子化は、高い計算能力のために密集した演算ユニットを単純化するため、人気を集めている。
しかし、層間における量子化誤差の影響に対する不均質な感度を無視し、結果として準最適推論精度をもたらす。
本研究は,超低精度量子化による精度劣化を軽減するために,ニューラルネットワーク構造を調整するニューラルチャネル拡張と呼ばれるニューラルアーキテクチャ探索を提案する。
提案手法は,ハードウェア制約(フロップ,パラムなど)を満たしながら,量子化センシティブ層のチャネルを選択的に拡張する。
CIFAR10 と ImageNet の2ビット量子化精度を向上させるために,提案手法がいくつかの人気ネットワークチャネルに適用可能であることを示す。
特に,2ビット ResNet50 のTop-1/Top-5 の精度は FLOP が小さく,パラメータサイズも小さい。
関連論文リスト
- Three Quantization Regimes for ReLU Networks [3.823356975862005]
有限精度重み付き深部ReLUニューラルネットワークによるリプシッツ関数近似の基本的な限界を確立する。
適切な量子化方式では、ニューラルネットワークはリプシッツ関数の近似においてメモリ最適性を示す。
論文 参考訳(メタデータ) (2024-05-03T09:27:31Z) - Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip [0.9187138676564589]
本稿では,革新的な量子化学習手法である高粒度量子化(HGQ)を提案する。
HGQは、勾配降下によって最適化できるようにすることで、重量当たりおよび活動当たりの精度を微調整する。
このアプローチは、演算演算が可能なハードウェア上で、超低レイテンシと低電力ニューラルネットワークを実現する。
論文 参考訳(メタデータ) (2024-05-01T17:18:46Z) - Mixed-Precision Quantization with Cross-Layer Dependencies [6.338965603383983]
混合精度量子化(MPQ)は、様々なビット幅を層に割り当て、精度と効率のトレードオフを最適化する。
既存の手法は、異なる層における量子化誤差が独立に作用すると仮定することでMPQ問題を単純化する。
この仮定は、量子化された深層ニューラルネットワークの真の振舞いを反映していないことを示す。
論文 参考訳(メタデータ) (2023-07-11T15:56:00Z) - Efficient and Effective Methods for Mixed Precision Neural Network
Quantization for Faster, Energy-efficient Inference [3.3213055774512648]
ネットワークの精度を下げるための量子化は、ネットワークを単純化する強力な技術である。
混合精度量子化法は,各レイヤの精度を選択的に調整し,タスク性能の最小低下を実現する。
タスク性能に及ぼすレイヤー精度選択の影響を推定するために,2つの方法を紹介した。
EAGLとALPSを用いて4ビット層と2ビット層を混合して完全精度を復元する。
論文 参考訳(メタデータ) (2023-01-30T23:26:33Z) - Mixed Precision of Quantization of Transformer Language Models for
Speech Recognition [67.95996816744251]
トランスフォーマーが表現する最先端のニューラルネットワークモデルは、実用アプリケーションにとってますます複雑で高価なものになりつつある。
現在の低ビット量子化法は、均一な精度に基づいており、量子化エラーに対するシステムの異なる部分での様々な性能感度を考慮できない。
最適局所精度設定は2つの手法を用いて自動的に学習される。
Penn Treebank (PTB)とSwitchboard corpusによるLF-MMI TDNNシステムの試験を行った。
論文 参考訳(メタデータ) (2021-11-29T09:57:00Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
本稿では,低ビット幅重みとアクティベーションで深部畳み込みニューラルネットワークを訓練する2つの新しい手法を提案する。
まず、ビット幅の少ない重みを得るため、既存の方法の多くは、全精度ネットワーク重みで量子化することにより量子化重みを得る。
第二に、低ビット幅のアクティベーションを得るために、既存の作品はすべてのチャネルを等しく考慮する。
論文 参考訳(メタデータ) (2020-12-26T15:21:18Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
画像超解像のための深い畳み込みニューラルネットワークの定量化は、計算コストを大幅に削減する。
既存の作業は、4ビット以下の超低精度の厳しい性能低下に苦しむか、または性能を回復するために重い微調整プロセスを必要とします。
高精度なトレーニングフリー量子化を実現する新しい分散認識量子化方式(DAQ)を提案する。
論文 参考訳(メタデータ) (2020-12-21T10:19:42Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
低ビットの重みとアクティベーションを持つ量子ニューラルネットワークは、AIアクセラレータを開発する上で魅力的なものだ。
本稿では、任意の量子化ニューラルネットワークにおける離散重みを探索可能な変数とみなし、差分法を用いて正確に探索する。
論文 参考訳(メタデータ) (2020-09-18T09:13:26Z) - Automatic heterogeneous quantization of deep neural networks for
low-latency inference on the edge for particle detectors [5.609098985493794]
我々は,チップ上での最小エネルギー,高精度,ナノ秒の推論,完全自動展開のための,深層ニューラルネットワークモデルの最適ヘテロジニゼーションバージョンを設計する手法を提案する。
これはCERN大型ハドロン衝突型加速器における陽子-陽子衝突におけるイベント選択の手順に不可欠であり、リソースは厳密に制限され、$mathcal O(1)mu$sのレイテンシが要求される。
論文 参考訳(メタデータ) (2020-06-15T15:07:49Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。