論文の概要: Adapting to Latent Subgroup Shifts via Concepts and Proxies
- arxiv url: http://arxiv.org/abs/2212.11254v1
- Date: Wed, 21 Dec 2022 18:30:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 13:35:25.057340
- Title: Adapting to Latent Subgroup Shifts via Concepts and Proxies
- Title(参考訳): 概念とプロキシによる潜在部分群シフトへの適応
- Authors: Ibrahim Alabdulmohsin, Nicole Chiou, Alexander D'Amour, Arthur
Gretton, Sanmi Koyejo, Matt J. Kusner, Stephen R. Pfohl, Olawale Salaudeen,
Jessica Schrouff, Katherine Tsai
- Abstract要約: 最適ターゲット予測器は、ソースドメインでのみ利用できる概念とプロキシ変数の助けを借りて、非パラメトリックに識別可能であることを示す。
本研究では,データ生成プロセスに特有の潜在変数モデルを提案する。
- 参考スコア(独自算出の注目度): 82.01141290360562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of unsupervised domain adaptation when the source
domain differs from the target domain because of a shift in the distribution of
a latent subgroup. When this subgroup confounds all observed data, neither
covariate shift nor label shift assumptions apply. We show that the optimal
target predictor can be non-parametrically identified with the help of concept
and proxy variables available only in the source domain, and unlabeled data
from the target. The identification results are constructive, immediately
suggesting an algorithm for estimating the optimal predictor in the target. For
continuous observations, when this algorithm becomes impractical, we propose a
latent variable model specific to the data generation process at hand. We show
how the approach degrades as the size of the shift changes, and verify that it
outperforms both covariate and label shift adjustment.
- Abstract(参考訳): 我々は、潜在サブグループの分布の変化により、ソースドメインがターゲットドメインと異なる場合、教師なし領域適応の問題に対処する。
この部分群が観測された全てのデータを分離する場合、共変量シフトやラベルシフトの仮定は適用されない。
最適なターゲット予測器は、ソースドメインでのみ利用可能な概念とプロキシ変数と、ターゲットからラベルなしのデータによって非パラメトリックに識別できることを示す。
識別結果は構築的であり、即座にターゲットの最適予測器を推定するアルゴリズムを提案する。
連続観測のために,本アルゴリズムが実用的でない場合,データ生成プロセスに固有の潜在変数モデルを提案する。
シフトサイズが変化するにつれて, アプローチの劣化が見られ, 共変量およびラベルシフトの調整に優れることを確認した。
関連論文リスト
- Learning When the Concept Shifts: Confounding, Invariance, and Dimension Reduction [5.38274042816001]
観測データでは、分布シフトは観測されていない共起因子によって駆動されることが多い。
このことは、観測データを用いた領域適応問題の研究を動機付けます。
学習した低次元部分空間を用いて、ターゲットとソースのリスクの間にほぼ理想的なギャップを生じさせるモデルを示す。
論文 参考訳(メタデータ) (2024-06-22T17:43:08Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
プロキシ変数は、遅延変数を明示的にリカバリしたりモデル化したりすることなく、分散シフトへの適応を可能にする。
両設定の複雑な分散シフトに適応する2段階のカーネル推定手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T09:32:41Z) - Digging Into Uncertainty-based Pseudo-label for Robust Stereo Matching [39.959000340261625]
本稿では,ロバストなステレオマッチングのための不確実性推定法を提案する。
事前学習されたモデルを新しい領域に適応させるために,不確実性に基づく擬似ラベルを提案する。
本手法は,ロバスト・ビジョン・チャレンジ2020のステレオタスクにおいて,強いクロスドメイン,適応,共同一般化を示す。
論文 参考訳(メタデータ) (2023-07-31T09:11:31Z) - Source-free Unsupervised Domain Adaptation for Blind Image Quality
Assessment [20.28784839680503]
既存の学習ベースのブラインド画像品質評価法(BIQA)は、大量の注釈付きトレーニングデータに大きく依存している。
本稿では,ソースフリーな非教師付きドメイン適応(SFUDA)への第一歩を,シンプルで効率的な方法で進める。
本稿では、BNアフィンパラメータのターゲット領域への適応を導くための、十分に設計された自己教師対象のグループを示す。
論文 参考訳(メタデータ) (2022-07-17T09:42:36Z) - Learning Unbiased Transferability for Domain Adaptation by Uncertainty
Modeling [107.24387363079629]
ドメイン適応は、ラベル付けされたソースドメインからラベル付けされていない、あるいはラベル付けされていないが関連するターゲットドメインに知識を転送することを目的としています。
ソース内のアノテートされたデータの量とターゲットドメインとの間の不均衡のため、ターゲットの分布のみがソースドメインにアライメントされる。
本稿では,非暴力的非暴力的移動可能性推定プラグイン(UTEP)を提案し,非暴力的移動を最適化するDA法において,識別器の不確実性をモデル化する。
論文 参考訳(メタデータ) (2022-06-02T21:58:54Z) - Towards Backwards-Compatible Data with Confounded Domain Adaptation [0.0]
一般化ラベルシフト(GLS)を変更することで、汎用データの後方互換性を実現する。
本稿では,ソースとターゲット条件分布のばらつきを最小限に抑えた新しい枠組みを提案する。
ガウス逆Kulback-Leibler分散と最大平均誤差を用いた具体的実装を提供する。
論文 参考訳(メタデータ) (2022-03-23T20:53:55Z) - Unsupervised Robust Domain Adaptation without Source Data [75.85602424699447]
我々は、利用できないターゲットラベルとソースデータのコンテキストにおけるロバストなドメイン適応の問題について研究する。
4つのベンチマークデータセットでテストされたベースラインに対して10%以上の精度で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-03-26T16:42:28Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
未知の真のターゲットラベルのプロキシとして、ドメイン不変の予測器のセットを使用します。
結果として生じるリスク見積の誤差は、プロキシモデルのターゲットリスクに依存する。
論文 参考訳(メタデータ) (2020-07-06T17:21:24Z) - Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain
Adaptive Semantic Segmentation [49.295165476818866]
本稿では、意味的セグメンテーションの文脈において、ソースドメインからターゲットドメインへの知識伝達の教師なし領域適応に焦点を当てる。
既存のアプローチでは、通常、擬似ラベルを未ラベルのターゲットドメインデータを完全に活用するための基礎的真理とみなす。
本稿では,擬似ラベル学習の修正のために,学習中の予測の不確かさを明示的に推定することを提案する。
論文 参考訳(メタデータ) (2020-03-08T12:37:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。