What do LLMs Know about Financial Markets? A Case Study on Reddit Market
Sentiment Analysis
- URL: http://arxiv.org/abs/2212.11311v1
- Date: Wed, 21 Dec 2022 19:11:19 GMT
- Title: What do LLMs Know about Financial Markets? A Case Study on Reddit Market
Sentiment Analysis
- Authors: Xiang Deng, Vasilisa Bashlovkina, Feng Han, Simon Baumgartner, Michael
Bendersky
- Abstract summary: Market sentiment analysis on social media content requires knowledge of both financial markets and social media jargon.
Our pipeline generates weak financial sentiment labels for Reddit posts with a large language model (LLM)
With only a handful of prompts, the final model performs on par with existing supervised models.
- Score: 15.195505464654493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Market sentiment analysis on social media content requires knowledge of both
financial markets and social media jargon, which makes it a challenging task
for human raters. The resulting lack of high-quality labeled data stands in the
way of conventional supervised learning methods. Instead, we approach this
problem using semi-supervised learning with a large language model (LLM). Our
pipeline generates weak financial sentiment labels for Reddit posts with an LLM
and then uses that data to train a small model that can be served in
production. We find that prompting the LLM to produce Chain-of-Thought
summaries and forcing it through several reasoning paths helps generate more
stable and accurate labels, while using a regression loss further improves
distillation quality. With only a handful of prompts, the final model performs
on par with existing supervised models. Though production applications of our
model are limited by ethical considerations, the model's competitive
performance points to the great potential of using LLMs for tasks that
otherwise require skill-intensive annotation.
Related papers
- Quantifying Qualitative Insights: Leveraging LLMs to Market Predict [0.0]
This study addresses challenges by leveraging daily reports from securities firms to create high-quality contextual information.
The reports are segmented into text-based key factors and combined with numerical data, such as price information, to form context sets.
A crafted prompt is designed to assign scores to the key factors, converting qualitative insights into quantitative results.
arXiv Detail & Related papers (2024-11-13T07:45:40Z) - Zero-to-Strong Generalization: Eliciting Strong Capabilities of Large Language Models Iteratively without Gold Labels [75.77877889764073]
Large Language Models (LLMs) have demonstrated remarkable performance through supervised fine-tuning or in-context learning using gold labels.
This study explores whether solely utilizing unlabeled data can elicit strong model capabilities.
We propose a new paradigm termed zero-to-strong generalization.
arXiv Detail & Related papers (2024-09-19T02:59:44Z) - Token-Efficient Leverage Learning in Large Language Models [13.830828529873056]
Large Language Models (LLMs) have excelled in various tasks but perform better in high-resource scenarios.
Data scarcity and the inherent difficulty of adapting LLMs to specific tasks compound the challenge.
We present a streamlined implement of this methodology called Token-Efficient Leverage Learning (TELL)
arXiv Detail & Related papers (2024-04-01T04:39:44Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - The ART of LLM Refinement: Ask, Refine, and Trust [85.75059530612882]
We propose a reasoning with refinement objective called ART: Ask, Refine, and Trust.
It asks necessary questions to decide when an LLM should refine its output.
It achieves a performance gain of +5 points over self-refinement baselines.
arXiv Detail & Related papers (2023-11-14T07:26:32Z) - Data-Centric Financial Large Language Models [27.464319154543173]
Large language models (LLMs) show promise for natural language tasks but struggle when applied directly to complex domains like finance.
We propose a data-centric approach to enable LLMs to better handle financial tasks.
arXiv Detail & Related papers (2023-10-07T04:53:31Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
Large Language Models (LLMs) pre-trained on extensive corpora have demonstrated superior performance across various NLP tasks.
We introduce a retrieval-augmented LLMs framework for financial sentiment analysis.
Our approach achieves 15% to 48% performance gain in accuracy and F1 score.
arXiv Detail & Related papers (2023-10-06T05:40:23Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z) - Temporal Data Meets LLM -- Explainable Financial Time Series Forecasting [7.485041391778341]
We focus on NASDAQ-100 stocks, making use of publicly accessible historical stock price data, company metadata, and historical economic/financial news.
We show that a publicly available LLM such as Open-LLaMA, after fine-tuning, can comprehend the instruction to generate explainable forecasts.
arXiv Detail & Related papers (2023-06-19T15:42:02Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.