Lightweight Monocular Depth Estimation
- URL: http://arxiv.org/abs/2212.11363v1
- Date: Wed, 21 Dec 2022 21:05:16 GMT
- Title: Lightweight Monocular Depth Estimation
- Authors: Ruilin Ma, Shiyao Chen, Qin Zhang
- Abstract summary: We create a lightweight machine-learning model in order to predict the depth value of each pixel given only a single RGB image as input with the Unet structure of the image segmentation network.
The proposed method achieves relatively high accuracy and low rootmean-square error.
- Score: 4.19709743271943
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Monocular depth estimation can play an important role in addressing the issue
of deriving scene geometry from 2D images. It has been used in a variety of
industries, including robots, self-driving cars, scene comprehension, 3D
reconstructions, and others. The goal of our method is to create a lightweight
machine-learning model in order to predict the depth value of each pixel given
only a single RGB image as input with the Unet structure of the image
segmentation network. We use the NYU Depth V2 dataset to test the structure and
compare the result with other methods. The proposed method achieves relatively
high accuracy and low rootmean-square error.
Related papers
- DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRF is a self-supervised learning framework for understanding 3D environments in autonomous driving scenes.
Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs.
arXiv Detail & Related papers (2024-06-17T21:15:13Z) - Diff-DOPE: Differentiable Deep Object Pose Estimation [29.703385848843414]
We introduce Diff-DOPE, a 6-DoF pose refiner that takes as input an image, a 3D textured model of an object, and an initial pose of the object.
The method uses differentiable rendering to update the object pose to minimize the visual error between the image and the projection of the model.
We show that this simple, yet effective, idea is able to achieve state-of-the-art results on pose estimation datasets.
arXiv Detail & Related papers (2023-09-30T18:52:57Z) - Perspective-aware Convolution for Monocular 3D Object Detection [2.33877878310217]
We propose a novel perspective-aware convolutional layer that captures long-range dependencies in images.
By enforcing convolutional kernels to extract features along the depth axis of every image pixel, we incorporates perspective information into network architecture.
We demonstrate improved performance on the KITTI3D dataset, achieving a 23.9% average precision in the easy benchmark.
arXiv Detail & Related papers (2023-08-24T17:25:36Z) - Pyramid Deep Fusion Network for Two-Hand Reconstruction from RGB-D Images [11.100398985633754]
We propose an end-to-end framework for recovering dense meshes for both hands.
Our framework employs ResNet50 and PointNet++ to derive features from RGB and point cloud.
We also introduce a novel pyramid deep fusion network (PDFNet) to aggregate features at different scales.
arXiv Detail & Related papers (2023-07-12T09:33:21Z) - Monocular 3D Object Detection with Depth from Motion [74.29588921594853]
We take advantage of camera ego-motion for accurate object depth estimation and detection.
Our framework, named Depth from Motion (DfM), then uses the established geometry to lift 2D image features to the 3D space and detects 3D objects thereon.
Our framework outperforms state-of-the-art methods by a large margin on the KITTI benchmark.
arXiv Detail & Related papers (2022-07-26T15:48:46Z) - Single-View View Synthesis in the Wild with Learned Adaptive Multiplane
Images [15.614631883233898]
Existing methods have shown promising results leveraging monocular depth estimation and color inpainting with layered depth representations.
We propose a new method based on the multiplane image (MPI) representation.
The experiments on both synthetic and real datasets demonstrate that our trained model works remarkably well and achieves state-of-the-art results.
arXiv Detail & Related papers (2022-05-24T02:57:16Z) - P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior [133.76192155312182]
We propose a method that learns to selectively leverage information from coplanar pixels to improve the predicted depth.
An extensive evaluation of our method shows that we set the new state of the art in supervised monocular depth estimation.
arXiv Detail & Related papers (2022-04-05T10:03:52Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
We propose a novel deep reinforcement learning-based approach for 3D object reconstruction from monocular images.
The proposed method outperforms the state-of-the-art in terms of visual quality, reconstruction accuracy, and computational time.
arXiv Detail & Related papers (2021-09-24T09:44:22Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
Estimating depth from a single RGB image is a fundamental task in computer vision.
In this work, we rely, instead of different views, on depth from focus cues.
We present results that are on par with supervised methods on KITTI and Make3D datasets and outperform unsupervised learning approaches.
arXiv Detail & Related papers (2020-01-14T20:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.