論文の概要: Group Sparse Coding for Image Denoising
- arxiv url: http://arxiv.org/abs/2212.11501v1
- Date: Thu, 22 Dec 2022 06:25:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 14:46:01.214390
- Title: Group Sparse Coding for Image Denoising
- Title(参考訳): 画像復調のためのグループスパース符号化
- Authors: Luoyu Chen and Fei Wu
- Abstract要約: グループスパース表現はGSRにおける画像デブロリングと画像インペインティングにおいて有望な結果を示した[3]
本稿では,GSR[3]モデルに適応するプログレッシブ画像復調アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.684545950979187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group sparse representation has shown promising results in image debulrring
and image inpainting in GSR [3] , the main reason that lead to the success is
by exploiting Sparsity and Nonlocal self-similarity (NSS) between patches on
natural images, and solve a regularized optimization problem. However, directly
adapting GSR[3] in image denoising yield very unstable and non-satisfactory
results, to overcome these issues, this paper proposes a progressive image
denoising algorithm that successfully adapt GSR [3] model and experiments shows
the superior performance than some of the state-of-the-art methods.
- Abstract(参考訳): グループスパース表現はGSR[3]における画像デブロリングと画像インペインティングの有望な結果を示しており、その主な原因は、自然画像のパッチ間のスパーシリティと非局所自己相似性(NSS)を利用して、正規化された最適化問題を解くことである。
しかし,GSR[3]を画像デノゲーションに直接適応させると,不安定で不満足な結果が得られるため,GSR[3]モデルをうまく適応させるプログレッシブ画像デノゲーションアルゴリズムを提案する。
関連論文リスト
- Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
低照度画像の強化、特に生ドメインからsRGBドメインへのマッピングのようなクロスドメインタスクは、依然として大きな課題である。
RAWMambaと呼ばれる新しいMambaスキャニング機構を提案する。
また,Retinex の先行したRetinex Decomposition Module (RDM) も提案する。
論文 参考訳(メタデータ) (2024-09-11T06:12:03Z) - Score Priors Guided Deep Variational Inference for Unsupervised
Real-World Single Image Denoising [14.486289176696438]
本稿では,実世界の実演のためのスコア先行誘導深部変分推論,すなわちScoreDVIを提案する。
我々は、実世界の雑音をモデル化するために、非i.i.d$ガウス混合モデルと変分ノイズ後部モデルを利用する。
提案手法は,他の単一画像ベースの実世界のデノベーション手法よりも優れ,データセットベースの教師なし手法に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2023-08-09T03:26:58Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
暗黙的ニューラル表現(INR)のアーキテクチャ的帰納的バイアスを利用した代替的認知戦略を提案する。
提案手法は,低雑音シナリオや実雑音シナリオの広い範囲において,既存のゼロショット復調手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-05T12:46:36Z) - Geodesic Gramian Denoising Applied to the Images Contaminated With Noise
Sampled From Diverse Probability Distributions [0.2578242050187029]
選択した画像から5つの顕著な確率分布からサンプリングされた雑音を除去する文法に基づくフィルタリング手法
ピクセルではなく、画像から分割されたパッチを採用することで、画像の滑らかさを保ちます。
3つのベンチマークコンピュータビジョンテスト画像を2つの最先端の復調法に適用し,その復調性能を検証した。
論文 参考訳(メタデータ) (2022-03-04T22:48:12Z) - Image Super-Resolution via Iterative Refinement [53.57766722279425]
SR3は再精製による超解像へのアプローチである。
確率的デノイジング拡散モデルを条件付き画像生成に適応させる。
様々な倍率係数の超分解能タスクに強い性能を示す。
論文 参考訳(メタデータ) (2021-04-15T17:50:42Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
本稿では,一対の相補的な旅先を含むLRD画像モデルを提案する。
次に、画像CSのためのRDモデルに基づく新しいハイブリッド・プラグイン・アンド・プレイ・フレームワークを提案する。
そこで,提案したH-based image CS問題の解法として,単純で効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-16T08:17:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。