Probing exciton dynamics with spectral selectivity through the use of
quantum entangled photons
- URL: http://arxiv.org/abs/2212.11519v2
- Date: Mon, 2 Oct 2023 08:06:22 GMT
- Title: Probing exciton dynamics with spectral selectivity through the use of
quantum entangled photons
- Authors: Yuta Fujihashi, Kuniyuki Miwa, Masahiro Higashi, Akihito Ishizaki
- Abstract summary: Quantum light is increasingly recognized as a promising resource for developing optical measurement techniques.
Recent advances in quantum optics technology have made it possible to manipulate the spectral and temporal properties of entangled photons.
We propose time-resolved spectroscopy in which specific signal contributions are selectively enhanced by harnessing the nonclassical correlations of entangled photons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum light is increasingly recognized as a promising resource for
developing optical measurement techniques. Particular attention has been paid
to enhancing the precision of the measurements beyond classical techniques by
using nonclassical correlations between quantum entangled photons. Recent
advances in quantum optics technology have made it possible to manipulate the
spectral and temporal properties of entangled photons, and the photon
correlations can facilitate the extraction of matter information with
relatively simple optical systems compared to conventional schemes. In these
respects, the applications of entangled photons to time-resolved spectroscopy
can open new avenues for unambiguously extracting information on dynamical
processes in complex molecular and materials systems. Here, we propose
time-resolved spectroscopy in which specific signal contributions are
selectively enhanced by harnessing the nonclassical correlations of entangled
photons. The entanglement time characterizes the mutual delay between an
entangled twin and determines the spectral distribution of the photon
correlations. The entanglement time plays a dual role as the knob for
controlling the accessible time region of dynamical processes and the degrees
of spectral selectivity. In this sense, the role of the entanglement time is
substantially equivalent to the temporal width of the classical laser pulse.
The results demonstrate that the application of quantum entangled photons to
time-resolved spectroscopy leads to monitoring dynamical processes in complex
molecular and materials systems by selectively extracting desired signal
contributions from congested spectra. We anticipate that more elaborately
engineered photon states would broaden the availability of quantum light
spectroscopy.
Related papers
- High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Entangled Photons Enabled Ultrafast Stimulated Raman Spectroscopy for
Molecular Dynamics [0.0]
We propose a new paradigm of stimulated Raman scattering with entangled photons.
A quantum ultrafast Raman spectroscopy is developed for condensed-phase molecules, to monitor the exciton populations and coherences.
Our work suggests a new scheme of optical signals and spectroscopy, with potential to unveil advanced information about complex materials.
arXiv Detail & Related papers (2023-05-24T02:57:43Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Quantum interferometric two-photon excitation spectroscopy [7.708943730059219]
We present an approach for quantum interferometric two-photon excitation spectroscopy.
Our proposed protocol overcomes the difficulties of engineering two-photon joint spectral intensities and fine-tuned absorption-frequency selection.
Results may significantly facilitate the use of quantum interferometric spectroscopy for extracting the information about the electronic structure of the two-photon excited-state manifold of atoms or molecules.
arXiv Detail & Related papers (2021-11-23T15:44:08Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Achieving two-dimensional optical spectroscopy with temporal and
spectral resolution using quantum entangled three photons [0.0]
Time-resolved entangled photon spectroscopy with monochromatic pumping is investigated.
The signal is not subject to Fourier limitations on the joint temporal and spectral resolution.
It is expected to be useful for investigating complex molecular systems in which multiple electronic states are present within a narrow energy range.
arXiv Detail & Related papers (2021-03-08T03:56:10Z) - Frequency-resolved photon correlations in cavity optomechanics [58.720142291102135]
We analyze the frequency-resolved correlations of the photons being emitted from an optomechanical system.
We discuss how the time-delayed correlations can reveal information about the dynamics of the system.
This enriched understanding of the system can trigger new experiments to probe nonlinear phenomena in optomechanics.
arXiv Detail & Related papers (2020-09-14T06:17:36Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.