Achieving two-dimensional optical spectroscopy with temporal and
spectral resolution using quantum entangled three photons
- URL: http://arxiv.org/abs/2103.04534v3
- Date: Mon, 19 Jul 2021 14:29:39 GMT
- Title: Achieving two-dimensional optical spectroscopy with temporal and
spectral resolution using quantum entangled three photons
- Authors: Yuta Fujihashi, Akihito Ishizaki
- Abstract summary: Time-resolved entangled photon spectroscopy with monochromatic pumping is investigated.
The signal is not subject to Fourier limitations on the joint temporal and spectral resolution.
It is expected to be useful for investigating complex molecular systems in which multiple electronic states are present within a narrow energy range.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in techniques for generating quantum light have stimulated
research on novel spectroscopic measurements using quantum entangled photons.
One such spectroscopy technique utilizes non-classical correlations among
entangled photons to enable measurements with enhanced sensitivity and
selectivity. Here, we investigate spectroscopic measurement utilizing entangled
three photons. In this measurement, time-resolved entangled photon spectroscopy
with monochromatic pumping [J. Chem. Phys. 153, 051102 (2020).] is integrated
with the frequency-dispersed two-photon counting technique, which suppresses
undesired accidental photon counts in the detector and thus allows one to
separate the weak desired signal. This time-resolved frequency-dispersed
two-photon counting signal, which is a function of two frequencies, is shown to
provide the same information as that of coherent two-dimensional optical
spectra. The spectral distribution of the phase-matching function works as a
frequency filter to selectively resolve a specific region of the
two-dimensional spectra, whereas the excited-state dynamics under investigation
are temporally resolved in the time region longer than the entanglement time.
The signal is not subject to Fourier limitations on the joint temporal and
spectral resolution, and therefore, it is expected to be useful for
investigating complex molecular systems in which multiple electronic states are
present within a narrow energy range.
Related papers
- Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Investigating the fast spectral diffusion of a quantum emitter in hBN
using resonant excitation and photon correlations [0.9605517200038842]
We show that a combination of resonant laser excitation and second-order photon correlations allows to access fast dynamics.
We experimentally implement this method to investigate the fast spectral diffusion of a color center generated by an electron beam in the two-dimensional material boron nitride.
arXiv Detail & Related papers (2023-03-09T15:02:25Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Probing exciton dynamics with spectral selectivity through the use of
quantum entangled photons [0.0]
Quantum light is increasingly recognized as a promising resource for developing optical measurement techniques.
Recent advances in quantum optics technology have made it possible to manipulate the spectral and temporal properties of entangled photons.
We propose time-resolved spectroscopy in which specific signal contributions are selectively enhanced by harnessing the nonclassical correlations of entangled photons.
arXiv Detail & Related papers (2022-12-22T07:40:41Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Quantum interferometric two-photon excitation spectroscopy [7.708943730059219]
We present an approach for quantum interferometric two-photon excitation spectroscopy.
Our proposed protocol overcomes the difficulties of engineering two-photon joint spectral intensities and fine-tuned absorption-frequency selection.
Results may significantly facilitate the use of quantum interferometric spectroscopy for extracting the information about the electronic structure of the two-photon excited-state manifold of atoms or molecules.
arXiv Detail & Related papers (2021-11-23T15:44:08Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Spectrally-resolved four-photon interference of time-frequency entangled
photons [0.0]
We analyze the behavior of phase-insensitive spectrally-resolved interferences arising from two pairs of time-frequency entangled photons.
Our analysis is a thorough exploration of what can be achieved using time-frequency entanglement and spectrally-resolved Bell-state measurements.
arXiv Detail & Related papers (2021-04-12T17:25:07Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.