Device Selection for the Coexistence of URLLC and Distributed Learning
Services
- URL: http://arxiv.org/abs/2212.11805v1
- Date: Thu, 22 Dec 2022 15:36:15 GMT
- Title: Device Selection for the Coexistence of URLLC and Distributed Learning
Services
- Authors: Milad Ganjalizadeh, Hossein Shokri Ghadikolaei, Deniz G\"und\"uz,
Marina Petrova
- Abstract summary: We investigate a mixed service scenario where distributed AI workflow and ultra-reliable low latency communication (URLLC) services run concurrently over a network.
We propose a risk-based formulation for device selection to minimize the AI training delays during its convergence period.
We transform it into a deep reinforcement learning problem and address it via a framework based on soft actor-critic algorithm.
- Score: 12.093278114651524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in distributed artificial intelligence (AI) have led to
tremendous breakthroughs in various communication services, from fault-tolerant
factory automation to smart cities. When distributed learning is run over a set
of wirelessly connected devices, random channel fluctuations and the incumbent
services running on the same network impact the performance of both distributed
learning and the coexisting service. In this paper, we investigate a mixed
service scenario where distributed AI workflow and ultra-reliable low latency
communication (URLLC) services run concurrently over a network. Consequently,
we propose a risk sensitivity-based formulation for device selection to
minimize the AI training delays during its convergence period while ensuring
that the operational requirements of the URLLC service are met. To address this
challenging coexistence problem, we transform it into a deep reinforcement
learning problem and address it via a framework based on soft actor-critic
algorithm. We evaluate our solution with a realistic and 3GPP-compliant
simulator for factory automation use cases. Our simulation results confirm that
our solution can significantly decrease the training delay of the distributed
AI service while keeping the URLLC availability above its required threshold
and close to the scenario where URLLC solely consumes all network resources.
Related papers
- A Distributed Neural Linear Thompson Sampling Framework to Achieve URLLC
in Industrial IoT [16.167107624956294]
Industrial Internet of Things (IIoT) networks will provide Ultra-Reliable Low-Latency Communication (URLLC) to support critical processes.
Standard protocols for allocating wireless resources may not optimize the latency-reliability trade-off, especially for uplink communication.
arXiv Detail & Related papers (2023-11-21T12:22:04Z) - Intelligent O-RAN Traffic Steering for URLLC Through Deep Reinforcement
Learning [3.59419219139168]
Open RAN (O-RAN) is a promising paradigm for building an intelligent RAN architecture.
This paper presents a Machine Learning (ML)-based Traffic Steering (TS) scheme to predict network congestion and then steer O-RAN traffic to avoid it and reduce the expected delay.
Our solution is evaluated against traditional reactive TS approaches that are offered as xApps in O-RAN and shows an average of 15.81 percent decrease in queuing delay across all deployed SFCs.
arXiv Detail & Related papers (2023-03-03T14:34:25Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Distributed Resource Allocation for URLLC in IIoT Scenarios: A
Multi-Armed Bandit Approach [17.24490186427519]
This paper addresses the problem of enabling inter-machine Ultra-Reliable Low-Latency Communication (URLLC) in future 6G Industrial Internet of Things (IIoT) networks.
We study a distributed, user-centric scheme based on machine learning in which User Equipments autonomously select their uplink radio resources.
Using simulation, we demonstrate that a Multi-Armed Bandit (MAB) approach represents a desirable solution to allocate resources with URLLC in mind.
arXiv Detail & Related papers (2022-11-22T11:50:05Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
New open radio access network (O-RAN) with distinguishing features such as flexible design, disaggregated virtual and programmable components, and intelligent closed-loop control was developed.
O-RAN slicing is being investigated as a critical strategy for ensuring network quality of service (QoS) in the face of changing circumstances.
This paper introduces a novel framework able to manage the network slices through provisioned resources intelligently.
arXiv Detail & Related papers (2022-08-30T17:00:53Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
We propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN)
Our approach enables multi-agent algorithms based on global state information to function by ensuring it is available at each robot.
We train the distributed GNN communication policies via reinforcement learning using the average Age of Information as the reward function and show that it improves training stability compared to task-specific reward functions.
arXiv Detail & Related papers (2021-03-08T21:48:55Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.