BSAC-CoEx: Coexistence of URLLC and Distributed Learning Services via Device Selection
- URL: http://arxiv.org/abs/2212.11805v2
- Date: Fri, 07 Mar 2025 16:52:17 GMT
- Title: BSAC-CoEx: Coexistence of URLLC and Distributed Learning Services via Device Selection
- Authors: Milad Ganjalizadeh, Hossein Shokri Ghadikolaei, Deniz Gündüz, Marina Petrova,
- Abstract summary: High-priority ultra-reliable low latency communication (URLLC) and low-priority distributed learning services run concurrently over a network.<n>We formulate this problem as a Markov decision process and address it via BSAC-CoEx, a framework based on the branching soft actor-critic (BSAC) algorithm.<n>Our solution can significantly decrease the training delays of the distributed learning service while keeping the URLLC availability above its required threshold.
- Score: 46.59702442756128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in distributed intelligence have driven impressive progress across a diverse range of applications, from industrial automation to autonomous transportation. Nevertheless, deploying distributed learning services over wireless networks poses numerous challenges. These arise from inherent uncertainties in wireless environments (e.g., random channel fluctuations), limited resources (e.g., bandwidth and transmit power), and the presence of coexisting services on the network. In this paper, we investigate a mixed service scenario wherein high-priority ultra-reliable low latency communication (URLLC) and low-priority distributed learning services run concurrently over a network. Utilizing device selection, we aim to minimize the convergence time of distributed learning while simultaneously fulfilling the requirements of the URLLC service. We formulate this problem as a Markov decision process and address it via BSAC-CoEx, a framework based on the branching soft actor-critic (BSAC) algorithm that determines each device's participation decision through distinct branches in the actor's neural network. We evaluate our solution with a realistic simulator that is compliant with 3GPP standards for factory automation use cases. Our simulation results confirm that our solution can significantly decrease the training delays of the distributed learning service while keeping the URLLC availability above its required threshold and close to the scenario where URLLC solely consumes all wireless resources.
Related papers
- Benchmarking Dynamic SLO Compliance in Distributed Computing Continuum Systems [9.820223170841219]
Service Level Objectives (SLOs) in large-scale architectures are challenging due to their heterogeneous nature and varying service requirements.
We present a benchmark of Active Inference -- an emerging method from neuroscience -- against three established reinforcement learning algorithms.
We find that Active Inference is a promising approach for ensuring SLO compliance in DCCS, offering lower memory usage, stable CPU utilization, and fast convergence.
arXiv Detail & Related papers (2025-03-05T08:56:26Z) - A Distributed Neural Linear Thompson Sampling Framework to Achieve URLLC
in Industrial IoT [16.167107624956294]
Industrial Internet of Things (IIoT) networks will provide Ultra-Reliable Low-Latency Communication (URLLC) to support critical processes.
Standard protocols for allocating wireless resources may not optimize the latency-reliability trade-off, especially for uplink communication.
arXiv Detail & Related papers (2023-11-21T12:22:04Z) - Intelligent O-RAN Traffic Steering for URLLC Through Deep Reinforcement
Learning [3.59419219139168]
Open RAN (O-RAN) is a promising paradigm for building an intelligent RAN architecture.
This paper presents a Machine Learning (ML)-based Traffic Steering (TS) scheme to predict network congestion and then steer O-RAN traffic to avoid it and reduce the expected delay.
Our solution is evaluated against traditional reactive TS approaches that are offered as xApps in O-RAN and shows an average of 15.81 percent decrease in queuing delay across all deployed SFCs.
arXiv Detail & Related papers (2023-03-03T14:34:25Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Distributed Resource Allocation for URLLC in IIoT Scenarios: A
Multi-Armed Bandit Approach [17.24490186427519]
This paper addresses the problem of enabling inter-machine Ultra-Reliable Low-Latency Communication (URLLC) in future 6G Industrial Internet of Things (IIoT) networks.
We study a distributed, user-centric scheme based on machine learning in which User Equipments autonomously select their uplink radio resources.
Using simulation, we demonstrate that a Multi-Armed Bandit (MAB) approach represents a desirable solution to allocate resources with URLLC in mind.
arXiv Detail & Related papers (2022-11-22T11:50:05Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
New open radio access network (O-RAN) with distinguishing features such as flexible design, disaggregated virtual and programmable components, and intelligent closed-loop control was developed.
O-RAN slicing is being investigated as a critical strategy for ensuring network quality of service (QoS) in the face of changing circumstances.
This paper introduces a novel framework able to manage the network slices through provisioned resources intelligently.
arXiv Detail & Related papers (2022-08-30T17:00:53Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
We propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN)
Our approach enables multi-agent algorithms based on global state information to function by ensuring it is available at each robot.
We train the distributed GNN communication policies via reinforcement learning using the average Age of Information as the reward function and show that it improves training stability compared to task-specific reward functions.
arXiv Detail & Related papers (2021-03-08T21:48:55Z) - Dynamic RAN Slicing for Service-Oriented Vehicular Networks via
Constrained Learning [40.5603189901241]
We investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements.
A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource.
We show that the RAWS effectively reduces the system cost while satisfying requirements with a high probability, as compared with benchmarks.
arXiv Detail & Related papers (2020-12-03T15:08:38Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.