Fully 3D Implementation of the End-to-end Deep Image Prior-based PET
Image Reconstruction Using Block Iterative Algorithm
- URL: http://arxiv.org/abs/2212.11844v1
- Date: Thu, 22 Dec 2022 16:25:58 GMT
- Title: Fully 3D Implementation of the End-to-end Deep Image Prior-based PET
Image Reconstruction Using Block Iterative Algorithm
- Authors: Fumio Hashimoto, Yuya Onishi, Kibo Ote, Hideaki Tashima, Taiga Yamaya
- Abstract summary: Deep image prior (DIP) has attracted attention owing to its unsupervised positron emission tomography (PET) image reconstruction.
We present the first attempt to implement an end-to-end DIP-based fully 3D PET image reconstruction method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep image prior (DIP) has recently attracted attention owing to its
unsupervised positron emission tomography (PET) image reconstruction, which
does not require any prior training dataset. In this paper, we present the
first attempt to implement an end-to-end DIP-based fully 3D PET image
reconstruction method that incorporates a forward-projection model into a loss
function. To implement a practical fully 3D PET image reconstruction, which
could not be performed due to a graphics processing unit memory limitation, we
modify the DIP optimization to block-iteration and sequentially learn an
ordered sequence of block sinograms. Furthermore, the relative difference
penalty (RDP) term was added to the loss function to enhance the quantitative
PET image accuracy. We evaluated our proposed method using Monte Carlo
simulation with [$^{18}$F]FDG PET data of a human brain and a preclinical study
on monkey brain [$^{18}$F]FDG PET data. The proposed method was compared with
the maximum-likelihood expectation maximization (EM), maximum-a-posterior EM
with RDP, and hybrid DIP-based PET reconstruction methods. The simulation
results showed that the proposed method improved the PET image quality by
reducing statistical noise and preserved a contrast of brain structures and
inserted tumor compared with other algorithms. In the preclinical experiment,
finer structures and better contrast recovery were obtained by the proposed
method. This indicated that the proposed method can produce high-quality images
without a prior training dataset. Thus, the proposed method is a key enabling
technology for the straightforward and practical implementation of end-to-end
DIP-based fully 3D PET image reconstruction.
Related papers
- Image2Points:A 3D Point-based Context Clusters GAN for High-Quality PET
Image Reconstruction [47.398304117228584]
We propose a 3D point-based context clusters GAN, namely PCC-GAN, to reconstruct high-quality SPET images from LPET.
Experiments on both clinical and phantom datasets demonstrate that our PCC-GAN outperforms the state-of-the-art reconstruction methods.
arXiv Detail & Related papers (2024-02-01T06:47:56Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - DULDA: Dual-domain Unsupervised Learned Descent Algorithm for PET image
reconstruction [18.89418916531878]
We propose a dual-domain unsupervised PET image reconstruction method based on learned decent algorithm.
Specifically, we unroll the gradient method with a learnable l2,1 norm for PET image reconstruction problem.
The experimental results domonstrate the superior performance of proposed method compared with maximum likelihood expectation maximazation (MLEM), total-variation regularized EM (EM-TV) and deep image prior based method (DIP)
arXiv Detail & Related papers (2023-03-08T15:29:17Z) - Self-Supervised Pre-Training for Deep Image Prior-Based Robust PET Image
Denoising [0.5999777817331317]
Deep image prior (DIP) has been successfully applied to positron emission tomography (PET) image restoration.
We propose a self-supervised pre-training model to improve the DIP-based PET image denoising performance.
arXiv Detail & Related papers (2023-02-27T06:55:00Z) - List-Mode PET Image Reconstruction Using Deep Image Prior [3.6427817678422016]
List-mode positron emission tomography (PET) image reconstruction is an important tool for PET scanners.
Deep learning is one possible solution to enhance the quality of PET image reconstruction.
In this study, we propose a novel list-mode PET image reconstruction method using an unsupervised CNN called deep image prior.
arXiv Detail & Related papers (2022-04-28T10:44:33Z) - Adversarial Parametric Pose Prior [106.12437086990853]
We learn a prior that restricts the SMPL parameters to values that produce realistic poses via adversarial training.
We show that our learned prior covers the diversity of the real-data distribution, facilitates optimization for 3D reconstruction from 2D keypoints, and yields better pose estimates when used for regression from images.
arXiv Detail & Related papers (2021-12-08T10:05:32Z) - 3D Human Texture Estimation from a Single Image with Transformers [106.6320286821364]
We propose a Transformer-based framework for 3D human texture estimation from a single image.
We also propose a mask-fusion strategy to combine the advantages of the RGB-based and texture-flow-based models.
arXiv Detail & Related papers (2021-09-06T16:00:20Z) - Direct PET Image Reconstruction Incorporating Deep Image Prior and a
Forward Projection Model [0.0]
Convolutional neural networks (CNNs) have recently achieved remarkable performance in positron emission tomography (PET) image reconstruction.
We propose an unsupervised direct PET image reconstruction method that incorporates a deep image prior framework.
Our proposed method incorporates a forward projection model with a loss function to achieve unsupervised direct PET image reconstruction from sinograms.
arXiv Detail & Related papers (2021-09-02T08:07:58Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.