Supervised Diffusion-Model-Based PET Image Reconstruction
- URL: http://arxiv.org/abs/2506.24034v1
- Date: Mon, 30 Jun 2025 16:39:50 GMT
- Title: Supervised Diffusion-Model-Based PET Image Reconstruction
- Authors: George Webber, Alexander Hammers, Andrew P King, Andrew J Reader,
- Abstract summary: Diffusion models (DMs) have been introduced as a regularizing prior for PET image reconstruction.<n>We propose a supervised DM-based algorithm for PET reconstruction.<n>Our method enforces the non-negativity of PET's Poisson likelihood model and accommodates the wide intensity range of PET images.
- Score: 44.89560992517543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models (DMs) have recently been introduced as a regularizing prior for PET image reconstruction, integrating DMs trained on high-quality PET images with unsupervised schemes that condition on measured data. While these approaches have potential generalization advantages due to their independence from the scanner geometry and the injected activity level, they forgo the opportunity to explicitly model the interaction between the DM prior and noisy measurement data, potentially limiting reconstruction accuracy. To address this, we propose a supervised DM-based algorithm for PET reconstruction. Our method enforces the non-negativity of PET's Poisson likelihood model and accommodates the wide intensity range of PET images. Through experiments on realistic brain PET phantoms, we demonstrate that our approach outperforms or matches state-of-the-art deep learning-based methods quantitatively across a range of dose levels. We further conduct ablation studies to demonstrate the benefits of the proposed components in our model, as well as its dependence on training data, parameter count, and number of diffusion steps. Additionally, we show that our approach enables more accurate posterior sampling than unsupervised DM-based methods, suggesting improved uncertainty estimation. Finally, we extend our methodology to a practical approach for fully 3D PET and present example results from real [$^{18}$F]FDG brain PET data.
Related papers
- PET Image Reconstruction Using Deep Diffusion Image Prior [3.1878756384085936]
We propose an anatomical prior-guided PET image reconstruction method based on diffusion models.<n>The proposed method alternated between diffusion sampling and model fine-tuning guided by the PET sinogram.<n>Experiment results show that the proposed PET reconstruction method can generalize robustly across tracer distributions and scanner types.
arXiv Detail & Related papers (2025-07-20T18:25:29Z) - Personalized MR-Informed Diffusion Models for 3D PET Image Reconstruction [44.89560992517543]
We propose a simple method for generating subject-specific PET images from a dataset of PET-MR scans.<n>The images we synthesize retain information from the subject's MR scan, leading to higher resolution and the retention of anatomical features.<n>With simulated and real [$18$F]FDG datasets, we show that pre-training a personalized diffusion model with subject-specific "pseudo-PET" images improves reconstruction accuracy with low-count data.
arXiv Detail & Related papers (2025-06-04T10:24:14Z) - Data Diet: Can Trimming PET/CT Datasets Enhance Lesion Segmentation? [70.38903555729081]
We describe our approach to compete in the autoPET3 datacentric track.
We find that in the autoPETIII dataset, a model that is trained on the entire dataset exhibits undesirable characteristics.
We counteract this by removing the easiest samples from the training dataset as measured by the model loss before retraining from scratch.
arXiv Detail & Related papers (2024-09-20T14:47:58Z) - HiDe-PET: Continual Learning via Hierarchical Decomposition of Parameter-Efficient Tuning [55.88910947643436]
We propose a unified framework for continual learning (CL) with pre-trained models (PTMs) and parameter-efficient tuning (PET)<n>We present Hierarchical Decomposition PET (HiDe-PET), an innovative approach that explicitly optimize the objective through incorporating task-specific and task-shared knowledge.<n>Our approach demonstrates remarkably superior performance over a broad spectrum of recent strong baselines.
arXiv Detail & Related papers (2024-07-07T01:50:25Z) - Score-Based Generative Models for PET Image Reconstruction [38.72868748574543]
We propose several PET-specific adaptations of score-based generative models.
The proposed framework is developed for both 2D and 3D PET.
In addition, we provide an extension to guided reconstruction using magnetic resonance images.
arXiv Detail & Related papers (2023-08-27T19:43:43Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Fully 3D Implementation of the End-to-end Deep Image Prior-based PET
Image Reconstruction Using Block Iterative Algorithm [0.0]
Deep image prior (DIP) has attracted attention owing to its unsupervised positron emission tomography (PET) image reconstruction.
We present the first attempt to implement an end-to-end DIP-based fully 3D PET image reconstruction method.
arXiv Detail & Related papers (2022-12-22T16:25:58Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.