論文の概要: Pushing the performances of ASR models on English and Spanish accents
- arxiv url: http://arxiv.org/abs/2212.12048v1
- Date: Thu, 22 Dec 2022 21:48:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 17:11:03.472524
- Title: Pushing the performances of ASR models on English and Spanish accents
- Title(参考訳): 英語およびスペイン語アクセントにおけるASRモデルの性能向上
- Authors: Pooja Chitkara, Morgane Riviere, Jade Copet, Frank Zhang, Yatharth
Saraf
- Abstract要約: 我々は,事前学習した埋め込みと補助的な分類損失が,ASRシステムの性能をいかに向上させるかを示す。
アップグレードを可能な限り普遍的なものにしたいので、いくつかのモデルアーキテクチャやいくつかの言語への影響について検討します。
- 参考スコア(独自算出の注目度): 13.031634839137773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech to text models tend to be trained and evaluated against a single
target accent. This is especially true for English for which native speakers
from the United States became the main benchmark. In this work, we are going to
show how two simple methods: pre-trained embeddings and auxiliary
classification losses can improve the performance of ASR systems. We are
looking for upgrades as universal as possible and therefore we will explore
their impact on several models architectures and several languages.
- Abstract(参考訳): テキストモデルへのスピーチは、単一のターゲットアクセントに対して訓練され、評価される傾向にある。
これは、アメリカ出身のネイティブスピーカーが主要なベンチマークとなった英語に特に当てはまる。
本稿では,asrシステムの性能向上のために,事前学習した組込みと補助的分類損失という2つの単純な方法を提案する。
可能な限り普遍的なアップグレードを探しているので、いくつかのモデルアーキテクチャといくつかの言語への影響について検討する。
関連論文リスト
- Improving Self-supervised Pre-training using Accent-Specific Codebooks [48.409296549372414]
自己教師型学習のためのアクセント認識適応技術
Mozilla Common Voiceデータセットでは、提案手法は他のアクセント適応手法よりも優れています。
論文 参考訳(メタデータ) (2024-07-04T08:33:52Z) - Efficient Compression of Multitask Multilingual Speech Models [0.0]
DistilWhisperは、マルチタスクとマルチ言語機能の利点を維持しながら、これらの言語におけるASRのパフォーマンスギャップを埋めることができる。
提案手法は, 言語専門家を用いた軽量モジュール型ASR微調整と, ささやかな大口径v2からの知識蒸留の2つの戦略を含む。
論文 参考訳(メタデータ) (2024-05-02T03:11:59Z) - Multilingual DistilWhisper: Efficient Distillation of Multi-task Speech
Models via Language-Specific Experts [14.999359332108767]
表現不足言語に対するASRの性能ギャップを埋めるため、DistilWhisperを提案する。
提案手法は, 言語専門家を用いた軽量モジュール型ASR微調整と, ささやかな大口径v2からの知識蒸留の2つの戦略を含む。
その結果,本手法は通常のファインチューニングやLoRAアダプタよりも効果的であることがわかった。
論文 参考訳(メタデータ) (2023-11-02T08:37:30Z) - Accented Speech Recognition With Accent-specific Codebooks [53.288874858671576]
音声アクセントは最先端の自動音声認識(ASR)システムに重大な課題をもたらす。
あまり表現されないアクセントによる性能低下は、ASRの包括的採用に対する深刻な抑止力である。
トレーニング可能なコードブックを用いたクロスアテンションを用いた,エンドツーエンドのASRシステムに対するアクセント適応手法を提案する。
論文 参考訳(メタデータ) (2023-10-24T16:10:58Z) - Adapting Multi-Lingual ASR Models for Handling Multiple Talkers [63.151811561972515]
最先端の大規模音声モデル(USM)は、複数のドメインや言語にまたがる適切な自動音声認識(ASR)性能を示す。
マルチストーカーASRに対するUSMの適応手法を提案する。
まず,マルチストーカーASRと発話タイムスタンプ予測を共同で行うシリアライズ出力訓練の強化版を開発する。
論文 参考訳(メタデータ) (2023-05-30T05:05:52Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
言語間音声認識のためのニューラルモデル再プログラミングに基づく新しいパラメータ効率学習フレームワークを提案する。
我々は、学習可能な事前学習機能強化に焦点を当てた、異なる補助的ニューラルネットワークアーキテクチャを設計する。
提案手法は,既存のASRチューニングアーキテクチャとその拡張性能を自己監督的損失で向上させる。
論文 参考訳(メタデータ) (2023-01-19T02:37:56Z) - M-SpeechCLIP: Leveraging Large-Scale, Pre-Trained Models for
Multilingual Speech to Image Retrieval [56.49878599920353]
本研究は,多言語画像音声検索におけるCLIPとHuBERTの大規模,英語のみの事前学習モデル(CLIPとHuBERT)の利用について検討する。
非英語画像音声検索では、各言語毎に個別のモデルを訓練する場合と、3言語すべてで音声を処理する1つのモデルの両方において、最先端のパフォーマンスを幅広いマージンで上回ります。
論文 参考訳(メタデータ) (2022-11-02T14:54:45Z) - ASR data augmentation in low-resource settings using cross-lingual
multi-speaker TTS and cross-lingual voice conversion [49.617722668505834]
提案手法は,モデル学習中に1つの話者のみを用いて音声合成と音声変換を行い,ASRシステムの改善を可能にする。
対象言語における1つの実話者のみを用いてデータ拡張法を用いて、有望なASRトレーニング結果を得ることが可能である。
論文 参考訳(メタデータ) (2022-03-29T11:55:30Z) - AccentDB: A Database of Non-Native English Accents to Assist Neural
Speech Recognition [3.028098724882708]
まず、ロバストなASRシステムのトレーニングとテストのために、非ネイティブアクセントで音声サンプルの精度の高いデータベースを作成するための重要な要件について説明する。
次に、私たちによって収集された4つのインド英語アクセントのサンプルを含む、そのようなデータベースであるAccentDBを紹介します。
アクセント分類モデルをいくつか提示し, アクセントクラスに対して徹底的に評価する。
論文 参考訳(メタデータ) (2020-05-16T12:38:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。