論文の概要: Federated PCA on Grassmann Manifold for Anomaly Detection in IoT
Networks
- arxiv url: http://arxiv.org/abs/2212.12121v1
- Date: Fri, 23 Dec 2022 03:11:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 17:03:26.217780
- Title: Federated PCA on Grassmann Manifold for Anomaly Detection in IoT
Networks
- Title(参考訳): IoTネットワークにおける異常検出のためのグラスマン多様体上のフェデレーションPCA
- Authors: Tung-Anh Nguyen, Jiayu He, Long Tan Le, Wei Bao and Nguyen H. Tran
- Abstract要約: 主成分分析(PCA)は、異常検出のための正常かつ悪意のある動作に対応する2つの非結合部分空間にネットワークトラフィックを分離するために提案されている。
異常検出のための正常なネットワーク動作の結合プロファイルを集約するためにIoTデバイスをコーディネートする,PCAベースのGrassmannian最適化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 19.861389496676964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of Internet of Things (IoT), network-wide anomaly detection is a
crucial part of monitoring IoT networks due to the inherent security
vulnerabilities of most IoT devices. Principal Components Analysis (PCA) has
been proposed to separate network traffics into two disjoint subspaces
corresponding to normal and malicious behaviors for anomaly detection. However,
the privacy concerns and limitations of devices' computing resources compromise
the practical effectiveness of PCA. We propose a federated PCA-based
Grassmannian optimization framework that coordinates IoT devices to aggregate a
joint profile of normal network behaviors for anomaly detection. First, we
introduce a privacy-preserving federated PCA framework to simultaneously
capture the profile of various IoT devices' traffic. Then, we investigate the
alternating direction method of multipliers gradient-based learning on the
Grassmann manifold to guarantee fast training and the absence of detecting
latency using limited computational resources. Empirical results on the NSL-KDD
dataset demonstrate that our method outperforms baseline approaches. Finally,
we show that the Grassmann manifold algorithm is highly adapted for IoT anomaly
detection, which permits drastically reducing the analysis time of the system.
To the best of our knowledge, this is the first federated PCA algorithm for
anomaly detection meeting the requirements of IoT networks.
- Abstract(参考訳): IoT(Internet of Things)の時代において、ほとんどのIoTデバイス固有のセキュリティ脆弱性のため、ネットワーク全体の異常検出は、IoTネットワーク監視の重要な部分である。
主成分分析(PCA)は、異常検出のための正常かつ悪意のある動作に対応する2つの非結合部分空間にネットワークトラフィックを分離するために提案されている。
しかし、デバイスのコンピューティングリソースのプライバシに関する懸念と制限は、PCAの実用性を損なう。
異常検出のための正常なネットワーク動作の結合プロファイルを集約するためにIoTデバイスをコーディネートする,PCAベースのGrassmannian最適化フレームワークを提案する。
まず、プライバシ保護のためのフェデレーションPCAフレームワークを導入し、さまざまなIoTデバイスのトラフィックのプロファイルを同時にキャプチャする。
次に,グラスマン多様体上の乗数勾配に基づく学習の交互方向法について検討し,高速なトレーニングと限られた計算資源を用いた遅延検出の欠如を保証する。
NSL-KDDデータセットにおける実験結果から,本手法がベースラインアプローチより優れていることが示された。
最後に、グラスマン多様体アルゴリズムはiot異常検出に高度に適応しており、システムの解析時間を劇的に削減できることを示した。
我々の知る限りでは、IoTネットワークの要件を満たす異常検出のための最初のフェデレーションPCAアルゴリズムである。
関連論文リスト
- Federated PCA on Grassmann Manifold for IoT Anomaly Detection [23.340237814344384]
従来の機械学習ベースの侵入検知システム(ML-IDS)にはラベル付きデータの要求のような制限がある。
AutoEncodersやGenerative Adversarial Networks (GAN)のような最近の教師なしML-IDSアプローチは代替ソリューションを提供する。
本稿では,分散データセットの共通表現を学習するフェデレーション型非教師付き異常検出フレームワークであるFedPCAを提案する。
論文 参考訳(メタデータ) (2024-07-10T07:23:21Z) - EG-ConMix: An Intrusion Detection Method based on Graph Contrastive Learning [4.140068761522124]
本稿では,E-GraphSAGEに基づくEG-ConMix方式を提案する。
EG-ConMixは、大規模グラフのトレーニング速度と精度において大きな利点がある。
論文 参考訳(メタデータ) (2024-03-24T04:09:48Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
確率的生成モデルの観点からPCAに基づく異常検出手法を再検討する。
2つの異なるデータセットを用いて数学的モデルを評価した。
論文 参考訳(メタデータ) (2023-02-02T13:41:18Z) - ARCADE: Adversarially Regularized Convolutional Autoencoder for Network
Anomaly Detection [0.0]
ARCADEと呼ばれる、教師なしの異常に基づくディープラーニング検出システム。
リソース制約のある環境でのオンライン検出に適した畳み込みオートエンコーダ(AE)を提案する。
論文 参考訳(メタデータ) (2022-05-03T11:47:36Z) - A Comparative Analysis of Machine Learning Algorithms for Intrusion
Detection in Edge-Enabled IoT Networks [0.0]
侵入検知は、ネットワークセキュリティの分野で難しい問題の一つである。
本稿では,従来の機械学習分類アルゴリズムの比較分析を行った。
MLP(Multi-Layer Perception)は入力と出力の間に依存性があり、侵入検知のネットワーク構成に依存している。
論文 参考訳(メタデータ) (2021-11-02T05:58:07Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Semi-supervised Variational Temporal Convolutional Network for IoT
Communication Multi-anomaly Detection [3.3659034873495632]
モノのインターネット(IoT)デバイスは、巨大な通信ネットワークを構築するために構築されます。
これらのデバイスは実際には安全ではないため、通信ネットワークが攻撃者によって露出されることを意味する。
本稿では,IoT 複数異常検出のための半監視ネットワーク SS-VTCN を提案する。
論文 参考訳(メタデータ) (2021-04-05T08:51:24Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。