論文の概要: Why Does Surprisal From Larger Transformer-Based Language Models Provide
a Poorer Fit to Human Reading Times?
- arxiv url: http://arxiv.org/abs/2212.12131v1
- Date: Fri, 23 Dec 2022 03:57:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 16:35:02.233598
- Title: Why Does Surprisal From Larger Transformer-Based Language Models Provide
a Poorer Fit to Human Reading Times?
- Title(参考訳): より大きなトランスフォーマーベースの言語モデルのsurprisalは、なぜ人間の読書時間に不適合なのだろうか?
- Authors: Byung-Doh Oh, William Schuler
- Abstract要約: トレーニング中にシーケンスを「記憶する」ためにトランスフォーマーをベースとした大規模モデルの妥当性は、その前提推定を人間的な期待から逸脱させる。
これらの結果から,大規模トランスフォーマーモデルがトレーニング中にシーケンスを「記憶する」ことの妥当性は,人為的な予測から逸脱することが示唆された。
- 参考スコア(独自算出の注目度): 9.909170013118775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a detailed linguistic analysis into why larger
Transformer-based pre-trained language models with more parameters and lower
perplexity nonetheless yield surprisal estimates that are less predictive of
human reading times. First, regression analyses show a strictly monotonic,
positive log-linear relationship between perplexity and fit to reading times
for the more recently released five GPT-Neo variants and eight OPT variants on
two separate datasets, replicating earlier results limited to just GPT-2 (Oh et
al., 2022). Subsequently, analysis of residual errors reveals a systematic
deviation of the larger variants, such as underpredicting reading times of
named entities and making compensatory overpredictions for reading times of
function words such as modals and conjunctions. These results suggest that the
propensity of larger Transformer-based models to 'memorize' sequences during
training makes their surprisal estimates diverge from humanlike expectations,
which warrants caution in using pre-trained language models to study human
language processing.
- Abstract(参考訳): 本研究は,トランスフォーマーをベースとした事前学習型言語モデルにおいて,パラメータが増加し,パープレクシリティが低下する理由について,より詳細な言語学的分析を行った。
まず、回帰分析により、より最近リリースされた5つの GPT-Neo 変種と8つの OPT 変種に対して、パープレキシティと読み取り時間との厳密な単調で正の対数関係が示され、以前の結果は単に GPT-2 (Oh et al., 2022) に限られていた。
その後、残差の解析により、名前の付いたエンティティの読み出し時間の過小評価や、モーダルや接続といった関数語の読み出し時間に対する補償的過小評価など、大きなバリエーションの体系的なずれが明らかになった。
これらの結果から, 大規模変圧器モデルから学習中の「記憶」シーケンスへの適応性は, 人的期待から逸脱し, 事前学習した言語モデルを用いて人間の言語処理を研究する際の注意が必要であることが示唆された。
関連論文リスト
- Reverse-Engineering the Reader [43.26660964074272]
本稿では,線形回帰器のパラメータを暗黙的に最適化するために,言語モデルを微調整する新しいアライメント手法を提案する。
単語をテストケースとして使用し、複数のモデルサイズとデータセットにわたる手法を評価する。
ダウンストリームNLPタスクにおける心理測定パワーとモデルの性能の逆関係と、ホールドアウトテストデータにおけるその難易度を見出した。
論文 参考訳(メタデータ) (2024-10-16T23:05:01Z) - Frequency Explains the Inverse Correlation of Large Language Models'
Size, Training Data Amount, and Surprisal's Fit to Reading Times [15.738530737312335]
近年の研究では、トランスフォーマーに基づく言語モデルが大きくなり、非常に大量のデータで訓練されているため、その推定結果が自然主義的な人間の読解時間に適合していることが示されている。
本稿では,これら2つの傾向の根底にある説明要因として,単語頻度が重要であることを示す一連の分析結果を示す。
その結果,トランスフォーマーをベースとした言語モデルによる推定は,稀な単語を予測するために学習する超人的に複雑な関連性から,人間の期待から逸脱していることがわかった。
論文 参考訳(メタデータ) (2024-02-03T20:22:54Z) - Humans and language models diverge when predicting repeating text [52.03471802608112]
我々は,人間とLMのパフォーマンスが分岐するシナリオを提示する。
人間とGPT-2 LMの予測はテキストスパンの最初のプレゼンテーションで強く一致しているが、メモリが役割を担い始めると、その性能は急速にバラバラになる。
このシナリオが,LMを人間の行動に近づける上で,今後の作業に拍車をかけることを期待しています。
論文 参考訳(メタデータ) (2023-10-10T08:24:28Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Token-wise Decomposition of Autoregressive Language Model Hidden States
for Analyzing Model Predictions [9.909170013118775]
本研究は,各初期入力トークンに基づいて,自己回帰言語モデルから最終隠れ状態の線形分解を行う。
次単語確率の変化を重要度尺度として、まず、どの文脈語が言語モデル予測に最も貢献するかを検討する。
論文 参考訳(メタデータ) (2023-05-17T23:55:32Z) - Transformer-Based Language Model Surprisal Predicts Human Reading Times
Best with About Two Billion Training Tokens [17.80735287413141]
本研究では,トランスフォーマーをベースとした言語モデル変種から,人間の読解時間を予測する能力に基づいて推定した推定値について検討した。
その結果、現代のモデル能力を持つほとんどの変種からの推定は、約20億のトレーニングトークンを見た後、最も適していることがわかった。
新たに訓練されたより小さなモデル変種は収束時に「転換点」を示し、その後言語モデルの難易度が低下し始め、人間の読解時間に適合する。
論文 参考訳(メタデータ) (2023-04-22T12:50:49Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
抽象的な要約は、事前訓練された言語モデルと大規模データセットの可用性のおかげで、近年で新たな関心を集めている。
有望な結果にもかかわらず、現在のモデルはいまだに現実的に矛盾した要約を生み出すことに苦しむ。
事実整合性評価モデルを利用して、多言語要約を改善する。
論文 参考訳(メタデータ) (2022-12-20T19:52:41Z) - Training Trajectories of Language Models Across Scales [99.38721327771208]
言語モデルのスケールアップは、前例のないパフォーマンス向上につながった。
異なるサイズの言語モデルは事前学習中にどのように学習するか?
より大きな言語モデルはなぜ望ましい振る舞いを示すのか?
論文 参考訳(メタデータ) (2022-12-19T19:16:29Z) - Better Language Model with Hypernym Class Prediction [101.8517004687825]
クラスベース言語モデル (LM) は、コンテキストの疎結合に$n$-gramのLMで対処するために長年開発されてきた。
本研究では,このアプローチをニューラルLMの文脈で再考する。
論文 参考訳(メタデータ) (2022-03-21T01:16:44Z) - Multilingual Language Models Predict Human Reading Behavior [8.830621849672108]
言語固有および多言語事前学習トランスフォーマーモデルの性能比較を行い,読解時間尺度の予測を行った。
BERT と XLM のモデルでは,様々な視線追跡特性の予測に成功している。
一連の実験で、これらのモデルのクロスドメインおよびクロス言語能力を分析し、人間の文処理をどのように反映するかを示す。
論文 参考訳(メタデータ) (2021-04-12T13:03:49Z) - Multi-timescale Representation Learning in LSTM Language Models [69.98840820213937]
言語モデルは、非常に短いから非常に長いまでの時間スケールで単語間の統計的依存関係を捉えなければならない。
我々は、長期記憶言語モデルにおけるメモリゲーティング機構が、パワーローの減衰を捉えることができるかの理論を導出した。
実験の結果,自然言語で学習したLSTM言語モデルは,この理論分布を近似することがわかった。
論文 参考訳(メタデータ) (2020-09-27T02:13:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。