Fast Event-based Optical Flow Estimation by Triplet Matching
- URL: http://arxiv.org/abs/2212.12218v1
- Date: Fri, 23 Dec 2022 09:12:16 GMT
- Title: Fast Event-based Optical Flow Estimation by Triplet Matching
- Authors: Shintaro Shiba and Yoshimitsu Aoki and Guillermo Gallego
- Abstract summary: Event cameras offer advantages over traditional cameras (low latency, high dynamic range, low power, etc.)
Optical flow estimation methods that work on packets of events trade off speed for accuracy.
We propose a novel optical flow estimation scheme based on triplet matching.
- Score: 13.298845944779108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event cameras are novel bio-inspired sensors that offer advantages over
traditional cameras (low latency, high dynamic range, low power, etc.). Optical
flow estimation methods that work on packets of events trade off speed for
accuracy, while event-by-event (incremental) methods have strong assumptions
and have not been tested on common benchmarks that quantify progress in the
field. Towards applications on resource-constrained devices, it is important to
develop optical flow algorithms that are fast, light-weight and accurate. This
work leverages insights from neuroscience, and proposes a novel optical flow
estimation scheme based on triplet matching. The experiments on publicly
available benchmarks demonstrate its capability to handle complex scenes with
comparable results as prior packet-based algorithms. In addition, the proposed
method achieves the fastest execution time (> 10 kHz) on standard CPUs as it
requires only three events in estimation. We hope that our research opens the
door to real-time, incremental motion estimation methods and applications in
real-world scenarios.
Related papers
- Characterization of point-source transient events with a rolling-shutter compressed sensing system [0.0]
Point-source transient events (PSTEs) pose several challenges to an imaging system.
Traditional imaging systems that meet these requirements are costly in terms of price, size, weight, power consumption, and data bandwidth.
We develop a novel compressed sensing algorithm adapted to the rolling shutter readout of an imaging system.
arXiv Detail & Related papers (2024-08-29T19:22:37Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
Review of event-based vSLAM algorithms that exploit the benefits of asynchronous and irregular event streams for localization and mapping tasks.
Paper categorizes event-based vSLAM methods into four main categories: feature-based, direct, motion-compensation, and deep learning methods.
arXiv Detail & Related papers (2023-04-19T16:21:14Z) - Taming Contrast Maximization for Learning Sequential, Low-latency,
Event-based Optical Flow [18.335337530059867]
Event cameras have gained significant traction since they open up new avenues for low-latency and low-power solutions to complex computer vision problems.
To unlock these solutions, it is necessary to develop algorithms that can leverage the unique nature of event data.
In this work, we propose a novel self-supervised learning pipeline for the estimation of event-based optical flow.
arXiv Detail & Related papers (2023-03-09T12:37:33Z) - Learning Dense and Continuous Optical Flow from an Event Camera [28.77846425802558]
Event cameras such as DAVIS can simultaneously output high temporal resolution events and low frame-rate intensity images.
Most of the existing optical flow estimation methods are based on two consecutive image frames and can only estimate discrete flow at a fixed time interval.
We propose a novel deep learning-based dense and continuous optical flow estimation framework from a single image with event streams.
arXiv Detail & Related papers (2022-11-16T17:53:18Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - hARMS: A Hardware Acceleration Architecture for Real-Time Event-Based
Optical Flow [0.0]
Event-based vision sensors produce asynchronous event streams with high temporal resolution based on changes in the visual scene.
Existing solutions for calculating optical flow from event data fail to capture the true direction of motion due to the aperture problem.
We present a hardware realization of the fARMS algorithm allowing for real-time computation of true flow on low-power, embedded platforms.
arXiv Detail & Related papers (2021-12-13T16:27:17Z) - Event-Based high-speed low-latency fiducial marker tracking [15.052022635853799]
We propose an end-to-end pipeline for real-time, low latency, 6 degrees-of-freedom pose estimation of fiducial markers.
We employ the high-speed abilities of event-based sensors to directly refine the spatial transformation.
This approach allows us to achieve pose estimation at a rate up to 156kHz, while only relying on CPU resources.
arXiv Detail & Related papers (2021-10-12T08:34:31Z) - SCFlow: Optical Flow Estimation for Spiking Camera [50.770803466875364]
Spiking camera has enormous potential in real applications, especially for motion estimation in high-speed scenes.
Optical flow estimation has achieved remarkable success in image-based and event-based vision, but % existing methods cannot be directly applied in spike stream from spiking camera.
This paper presents, SCFlow, a novel deep learning pipeline for optical flow estimation for spiking camera.
arXiv Detail & Related papers (2021-10-08T06:16:45Z) - Dense Optical Flow from Event Cameras [55.79329250951028]
We propose to incorporate feature correlation and sequential processing into dense optical flow estimation from event cameras.
Our proposed approach computes dense optical flow and reduces the end-point error by 23% on MVSEC.
arXiv Detail & Related papers (2021-08-24T07:39:08Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.