Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach
- URL: http://arxiv.org/abs/2210.11780v3
- Date: Sun, 28 May 2023 06:56:56 GMT
- Title: Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach
- Authors: Tong Nie, Guoyang Qin, Yunpeng Wang, Jian Sun
- Abstract summary: We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
- Score: 76.45949280328838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic speed is central to characterizing the fluidity of the road network.
Many transportation applications rely on it, such as real-time navigation,
dynamic route planning, and congestion management. Rapid advances in sensing
and communication techniques make traffic speed detection easier than ever.
However, due to sparse deployment of static sensors or low penetration of
mobile sensors, speeds detected are incomplete and far from network-wide use.
In addition, sensors are prone to error or missing data due to various kinds of
reasons, speeds from these sensors can become highly noisy. These drawbacks
call for effective techniques to recover credible estimates from the incomplete
data. In this work, we first identify the issue as a spatiotemporal kriging
problem and propose a Laplacian enhanced low-rank tensor completion (LETC)
framework featuring both lowrankness and multi-dimensional correlations for
large-scale traffic speed kriging under limited observations. To be specific,
three types of speed correlation including temporal continuity, temporal
periodicity, and spatial proximity are carefully chosen and simultaneously
modeled by three different forms of graph Laplacian, named temporal graph
Fourier transform, generalized temporal consistency regularization, and
diffusion graph regularization. We then design an efficient solution algorithm
via several effective numeric techniques to scale up the proposed model to
network-wide kriging. By performing experiments on two public million-level
traffic speed datasets, we finally draw the conclusion and find our proposed
LETC achieves the state-of-the-art kriging performance even under low
observation rates, while at the same time saving more than half computing time
compared with baseline methods. Some insights into spatiotemporal traffic data
modeling and kriging at the network level are provided as well.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Temporal Graph Learning Recurrent Neural Network for Traffic Forecasting [27.20703077756038]
We propose Temporal Graph Learning Recurrent Neural Network (TGLRN) to address these problems.
More precisely, to effectively model the nature of time series, we leverage Recurrent Neural Networks (RNNs) to dynamically construct a graph at each time step.
Experimental results on four commonly used real-world benchmark datasets show the effectiveness of TGLRN.
arXiv Detail & Related papers (2024-06-04T19:08:40Z) - Towards better traffic volume estimation: Jointly addressing the
underdetermination and nonequilibrium problems with correlation-adaptive GNNs [47.18837782862979]
This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation.
We demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues.
arXiv Detail & Related papers (2023-03-10T02:22:33Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - DMGCRN: Dynamic Multi-Graph Convolution Recurrent Network for Traffic
Forecasting [7.232141271583618]
We propose a novel dynamic multi-graph convolution recurrent network (DMG) to tackle above issues.
We use the distance-based graph to capture spatial information from nodes are close in distance.
We also construct a novel latent graph which encoded the structure correlations among roads to capture spatial information from nodes are similar in structure.
arXiv Detail & Related papers (2021-12-04T06:51:55Z) - Low-Rank Autoregressive Tensor Completion for Spatiotemporal Traffic
Data Imputation [4.9831085918734805]
Missing data imputation has been a long-standing research topic and critical application for real-world intelligent transportation systems.
We propose a low-rank autoregressive tensor completion (LATC) framework by introducing textittemporal variation as a new regularization term.
We conduct extensive numerical experiments on several real-world traffic data sets, and our results demonstrate the effectiveness of LATC in diverse missing scenarios.
arXiv Detail & Related papers (2021-04-30T12:00:57Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic
Forecasting [4.147625439377302]
An attention temporal graph convolutional network (A3T-GCN) traffic forecasting method was proposed to capture global temporal dynamics and spatial correlations.
The A3T-GCN model learns the short-time trend in time series by using the gated recurrent units and learns the spatial dependence based on the topology of the road network.
Experimental results in real-world datasets demonstrate the effectiveness and robustness of proposed A3T-GCN.
arXiv Detail & Related papers (2020-06-20T14:12:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.