Infrared Image Super-Resolution: Systematic Review, and Future Trends
- URL: http://arxiv.org/abs/2212.12322v2
- Date: Wed, 15 Nov 2023 08:53:29 GMT
- Title: Infrared Image Super-Resolution: Systematic Review, and Future Trends
- Authors: Yongsong Huang, Tomo Miyazaki, Xiaofeng Liu, Shinichiro Omachi
- Abstract summary: Investigating infrared (IR) image (or thermal images) super-resolution is a continuing concern within the development of deep learning.
This survey aims to provide a comprehensive perspective of IR image super-resolution.
Deficits in current technologies and possible promising directions for the community to explore are highlighted.
- Score: 8.56737571058847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image Super-Resolution (SR) is essential for a wide range of computer vision
and image processing tasks. Investigating infrared (IR) image (or thermal
images) super-resolution is a continuing concern within the development of deep
learning. This survey aims to provide a comprehensive perspective of IR image
super-resolution, including its applications, hardware imaging system dilemmas,
and taxonomy of image processing methodologies. In addition, the datasets and
evaluation metrics in IR image super-resolution tasks are also discussed.
Furthermore, the deficiencies in current technologies and possible promising
directions for the community to explore are highlighted. To cope with the rapid
development in this field, we intend to regularly update the relevant excellent
work at \url{https://github.com/yongsongH/Infrared_Image_SR_Survey
Related papers
- Dehazing Remote Sensing and UAV Imagery: A Review of Deep Learning, Prior-based, and Hybrid Approaches [4.516330345599765]
High-quality images are crucial in remote sensing and UAV applications.
atmospheric haze can severely degrade image quality, making image dehazing a critical research area.
arXiv Detail & Related papers (2024-05-13T07:35:24Z) - RS-Mamba for Large Remote Sensing Image Dense Prediction [58.12667617617306]
We propose the Remote Sensing Mamba (RSM) for dense prediction tasks in large VHR remote sensing images.
RSM is specifically designed to capture the global context of remote sensing images with linear complexity.
Our model achieves better efficiency and accuracy than transformer-based models on large remote sensing images.
arXiv Detail & Related papers (2024-04-03T12:06:01Z) - Infrared Image Super-Resolution via GAN [3.2199000920848486]
We provide a brief overview of the application of generative models in the domain of infrared (IR) image super-resolution.
We propose potential areas for further investigation and advancement in the application of generative models for IR image super-resolution.
arXiv Detail & Related papers (2023-12-01T16:16:46Z) - Guided Depth Map Super-resolution: A Survey [88.54731860957804]
Guided depth map super-resolution (GDSR) aims to reconstruct a high-resolution (HR) depth map from a low-resolution (LR) observation with the help of a paired HR color image.
A myriad of novel and effective approaches have been proposed recently, especially with powerful deep learning techniques.
This survey is an effort to present a comprehensive survey of recent progress in GDSR.
arXiv Detail & Related papers (2023-02-19T15:43:54Z) - Efficient High-Resolution Deep Learning: A Survey [90.76576712433595]
Cameras in modern devices such as smartphones, satellites and medical equipment are capable of capturing very high resolution images and videos.
Such high-resolution data often need to be processed by deep learning models for cancer detection, automated road navigation, weather prediction, surveillance, optimizing agricultural processes and many other applications.
Using high-resolution images and videos as direct inputs for deep learning models creates many challenges due to their high number of parameters, computation cost, inference latency and GPU memory consumption.
Several works in the literature propose better alternatives in order to deal with the challenges of high-resolution data and improve accuracy and speed while complying with hardware limitations
arXiv Detail & Related papers (2022-07-26T17:13:53Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - Infrared Image Super-Resolution via Heterogeneous Convolutional WGAN [4.6667021835430145]
We present a framework that employs heterogeneous kernel-based super-resolution Wasserstein GAN (HetSRWGAN) for IR image super-resolution.
HetSRWGAN achieves consistently better performance in both qualitative and quantitative evaluations.
arXiv Detail & Related papers (2021-09-02T14:01:05Z) - Deep Burst Super-Resolution [165.90445859851448]
We propose a novel architecture for the burst super-resolution task.
Our network takes multiple noisy RAW images as input, and generates a denoised, super-resolved RGB image as output.
In order to enable training and evaluation on real-world data, we additionally introduce the BurstSR dataset.
arXiv Detail & Related papers (2021-01-26T18:57:21Z) - Multi-image Super Resolution of Remotely Sensed Images using Residual
Feature Attention Deep Neural Networks [1.3764085113103222]
The presented research proposes a novel residual attention model (RAMS) that efficiently tackles the multi-image super-resolution task.
We introduce the mechanism of visual feature attention with 3D convolutions in order to obtain an aware data fusion and information extraction.
Our representation learning network makes extensive use of nestled residual connections to let flow redundant low-frequency signals.
arXiv Detail & Related papers (2020-07-06T22:54:02Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.