Contrastive Representation Learning for Dynamic Link Prediction in Temporal Networks
- URL: http://arxiv.org/abs/2408.12753v1
- Date: Thu, 22 Aug 2024 22:50:46 GMT
- Title: Contrastive Representation Learning for Dynamic Link Prediction in Temporal Networks
- Authors: Amirhossein Nouranizadeh, Fatemeh Tabatabaei Far, Mohammad Rahmati,
- Abstract summary: We introduce a self-supervised method for learning representations of temporal networks.
We propose a recurrent message-passing neural network architecture for modeling the information flow over time-respecting paths of temporal networks.
The proposed method is tested on Enron, COLAB, and Facebook datasets.
- Score: 1.9389881806157312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolving networks are complex data structures that emerge in a wide range of systems in science and engineering. Learning expressive representations for such networks that encode their structural connectivity and temporal evolution is essential for downstream data analytics and machine learning applications. In this study, we introduce a self-supervised method for learning representations of temporal networks and employ these representations in the dynamic link prediction task. While temporal networks are typically characterized as a sequence of interactions over the continuous time domain, our study focuses on their discrete-time versions. This enables us to balance the trade-off between computational complexity and precise modeling of the interactions. We propose a recurrent message-passing neural network architecture for modeling the information flow over time-respecting paths of temporal networks. The key feature of our method is the contrastive training objective of the model, which is a combination of three loss functions: link prediction, graph reconstruction, and contrastive predictive coding losses. The contrastive predictive coding objective is implemented using infoNCE losses at both local and global scales of the input graphs. We empirically show that the additional self-supervised losses enhance the training and improve the model's performance in the dynamic link prediction task. The proposed method is tested on Enron, COLAB, and Facebook datasets and exhibits superior results compared to existing models.
Related papers
- Dynamic Encoding and Decoding of Information for Split Learning in
Mobile-Edge Computing: Leveraging Information Bottleneck Theory [1.1151919978983582]
Split learning is a privacy-preserving distributed learning paradigm in which an ML model is split into two parts (i.e., an encoder and a decoder)
In mobile-edge computing, network functions can be trained via split learning where an encoder resides in a user equipment (UE) and a decoder resides in the edge network.
We present a new framework and training mechanism to enable a dynamic balancing of the transmission resource consumption with the informativeness of the shared latent representations.
arXiv Detail & Related papers (2023-09-06T07:04:37Z) - Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations [0.0]
Piecewise-Veable Model (PiVeM) for representation of continuous-time dynamic networks.
We show that PiVeM can successfully represent network structure and dynamics in ultra-low two-dimensional spaces.
It outperforms relevant state-of-art methods in downstream tasks such as link prediction.
arXiv Detail & Related papers (2022-12-23T13:57:56Z) - Dynamic Community Detection via Adversarial Temporal Graph
Representation Learning [17.487265170798974]
In this work, an adversarial temporal graph representation learning framework is proposed to detect dynamic communities from a small sample of brain network data.
In addition, the framework employs adversarial training to guide the learning of temporal graph representation and optimize the measurable modularity loss to maximize the modularity of community.
arXiv Detail & Related papers (2022-06-29T08:44:22Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - Network Classifiers Based on Social Learning [71.86764107527812]
We propose a new way of combining independently trained classifiers over space and time.
The proposed architecture is able to improve prediction performance over time with unlabeled data.
We show that this strategy results in consistent learning with high probability, and it yields a robust structure against poorly trained classifiers.
arXiv Detail & Related papers (2020-10-23T11:18:20Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z) - Deep learning of contagion dynamics on complex networks [0.0]
We propose a complementary approach based on deep learning to build effective models of contagion dynamics on networks.
By allowing simulations on arbitrary network structures, our approach makes it possible to explore the properties of the learned dynamics beyond the training data.
Our results demonstrate how deep learning offers a new and complementary perspective to build effective models of contagion dynamics on networks.
arXiv Detail & Related papers (2020-06-09T17:18:34Z) - Link Prediction for Temporally Consistent Networks [6.981204218036187]
Link prediction estimates the next relationship in dynamic networks.
The use of adjacency matrix to represent dynamically evolving networks limits the ability to analytically learn from heterogeneous, sparse, or forming networks.
We propose a new method of canonically representing heterogeneous time-evolving activities as a temporally parameterized network model.
arXiv Detail & Related papers (2020-06-06T07:28:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.