Spatial and temporal characteristics of spontaneous parametric down-conversion with varying focal planes of interacting beams
- URL: http://arxiv.org/abs/2212.12571v3
- Date: Fri, 13 Sep 2024 10:34:06 GMT
- Title: Spatial and temporal characteristics of spontaneous parametric down-conversion with varying focal planes of interacting beams
- Authors: Richard Bernecker, Baghdasar Baghdasaryan, Stephan Fritzsche,
- Abstract summary: Spontaneous parametric down-conversion (SPDC) is a widely used process to prepare entangled photon pairs.
The exact focal plane position of the pump beam relative to those of the detection modes is difficult to determine in a real experiment.
In this work, we consider variable positions of focal planes and investigate how shifts of these focal planes influence the spatial and temporal properties of photon pairs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spontaneous parametric down-conversion (SPDC) is a widely used process to prepare entangled photon pairs. In SPDC, a second-order nonlinear crystal is pumped by a coherent laser beam to generate photon pairs. The photon pairs are usually detected by single-mode fibers (SMF), where only photons in a Gaussian mode can be collected. The collection modes possess typical Gaussian parameters, namely a beam waist and a focal plane position. The collection efficiency of photons highly depends on the choice of both parameters. The exact focal plane position of the pump beam relative to those of the detection modes is difficult to determine in a real experiment. Usually, theoretical and experimental studies assume that the focal plane positions of the pump and the generated beams are positioned in the center of the crystal. The displacement of beam focal planes can lead to deviations from expected results and the coupling efficiency into SMF can increase or decrease. In this work, we consider variable positions of focal planes and investigate how shifts of these focal planes influence the spatial and temporal properties of photon pairs. We present SPDC arrangements, in which the knowledge of the exact position of the focal planes is essential, as well as scenarios, where focal plane displacements do not contribute significantly to experimental outcomes. These findings are of particular interest for achieving higher efficiency in SPDC experiments.
Related papers
- Diffraction of correlated biphotons through transparent samples [0.0]
We show that if a phase object is placed in the image plane of the source, only the propagation of the function of the centroid coordinates is altered.
Our findings offer applications for non-interferometric, quantum-enhanced phase imaging.
arXiv Detail & Related papers (2024-10-30T02:00:02Z) - Atomic diffraction from single-photon transitions in gravity and
Standard-Model extensions [49.26431084736478]
We study single-photon transitions, both magnetically-induced and direct ones, in gravity and Standard-Model extensions.
We take into account relativistic effects like the coupling of internal to center-of-mass degrees of freedom, induced by the mass defect.
arXiv Detail & Related papers (2023-09-05T08:51:42Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Optimal focusing conditions for bright spontaneous parametric
down-conversion sources [0.0]
We investigate the optimal focusing conditions to maximize the number of photons produced in an SPDC process and coupled with single-mode fibers.
We show that the optimal ratio between the pump waist and the generated photons waist depends on the emission angle.
For this type of emission, we also investigate the role of the transverse walk-off outside the thin crystal regime.
arXiv Detail & Related papers (2023-02-02T14:24:04Z) - Spectral Properties of Transverse Laguerre-Gauss Modes in Parametric Down-Conversion [0.0]
We study the spectral dependence of the transverse Laguerre-Gauss modes in parametric downconversion.
We show how the spectral and spatial coupling can be harnessed to tune the purity of the well-known orbital angular momentum entanglement.
This work has implications for efficient collection of entangled photons in a transverse single mode, quantum imaging, and engineering pure states for high-dimensional quantum information processing.
arXiv Detail & Related papers (2022-09-05T11:37:31Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Bandwidth control of the biphoton wavefunction exploiting
spatio-temporal correlations [0.0]
We study how the waists of the detection and pump beams impact on the spectral bandwidth of the photons.
This allows for a simple experimental implementation to control the bandwidth of the biphoton spectra.
arXiv Detail & Related papers (2021-04-28T13:30:00Z) - A learning-based view extrapolation method for axial super-resolution [52.748944517480155]
Axial light field resolution refers to the ability to distinguish features at different depths by refocusing.
We propose a learning-based method to extrapolate novel views from axial volumes of sheared epipolar plane images.
arXiv Detail & Related papers (2021-03-11T07:22:13Z) - Correlation Plenoptic Imaging between Arbitrary Planes [52.77024349608834]
We show that the protocol enables to change the focused planes, in post-processing, and to achieve an unprecedented combination of image resolution and depth of field.
Results lead the way towards the development of compact designs for correlation plenoptic imaging devices based on chaotic light, as well as high-SNR plenoptic imaging devices based on entangled photon illumination.
arXiv Detail & Related papers (2020-07-23T14:26:14Z) - Optimization of collection optics for maximum fidelity in entangled
photon sources [0.0]
decoherence sources for entangled photons created by spontaneous parametric down conversion phenomenon is studied.
The phase and spatial distinguishability of photon pairs from crystals reduce the maximum achievable entanglement fidelity.
A realistic scenario is numerically modelled, where the photon pairs with nonzero emission angle gather a phase difference.
arXiv Detail & Related papers (2020-07-14T00:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.