Quantum vortices of strongly interacting photons
- URL: http://arxiv.org/abs/2302.05967v1
- Date: Sun, 12 Feb 2023 18:11:04 GMT
- Title: Quantum vortices of strongly interacting photons
- Authors: Lee Drori, Bankim Chandra Das, Tomer Danino Zohar, Gal Winer, Eilon
Poem, Alexander Poddubny, Ofer Firstenberg
- Abstract summary: Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
- Score: 52.131490211964014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vortices are a hallmark of topologically nontrivial dynamics in nonlinear
physics and arise in a huge variety of systems, from space and atmosphere to
condensed matter and quantum gases. In optics, vortices manifest as phase
twists of the electromagnetic field, commonly formed by the interaction of
light and matter. Formation of vortices by effective interaction of light with
itself requires strong optical nonlinearity and has therefore been confined,
until now, to the classical regime. Here we report on the realization of
quantum vortices resulting from a strong photon-photon interaction in a quantum
nonlinear optical medium. The interaction causes faster phase accumulation for
co-propagating photons. Similarly to a plate pushing water, the local phase
accumulation produces a quantum vortex-antivortex pair within the two-photon
wavefunction. For three photons, the formation of vortex lines and a central
vortex ring attests to a genuine three-photon interaction. The wavefunction
topology, governed by two- and three-photon bound states, imposes a conditional
phase shift of $\pi$-per-photon, a potential resource for deterministic quantum
logic operations.
Related papers
- Harnessing spontaneous emission of correlated photon pairs from ladder-type giant atoms [5.498509152557573]
We show that a ladder-type three-level giant atom spontaneously emits strongly correlated photon pairs with high efficiency.
By encoding local phases into the optimal coupling sequence, directional two-photon correlated transfer can be achieved.
Such correlated photon pairs have great potential applications for quantum information processing.
arXiv Detail & Related papers (2024-06-18T09:03:00Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Quantum correlated photons via a passive nonlinear microcavity [1.0753191494611891]
We create non-classical photon correlations, including photon anti-bunching, via a passive InGaP photonic integrated circuit.
Our work opens a new route in controlling quantum light by harnessing highly-engineerable bulk optical nonlinearities.
arXiv Detail & Related papers (2023-04-23T15:02:36Z) - Ultrastrong light-matter interaction in a multimode photonic crystal [0.1588748438612071]
We show that the transport of a single photon becomes a many-body problem, owing to the strong participation of multi-photon bound states.
This work opens exciting prospects for exploring nonlinear quantum optics at the single-photon level.
arXiv Detail & Related papers (2022-09-29T17:43:25Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.