論文の概要: HandsOff: Labeled Dataset Generation With No Additional Human
Annotations
- arxiv url: http://arxiv.org/abs/2212.12645v2
- Date: Thu, 30 Mar 2023 19:38:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 17:01:47.376986
- Title: HandsOff: Labeled Dataset Generation With No Additional Human
Annotations
- Title(参考訳): HandsOff:追加の人間アノテーションのないラベル付きデータセット生成
- Authors: Austin Xu, Mariya I. Vasileva, Achal Dave, Arjun Seshadri
- Abstract要約: 本稿では,任意の数の合成画像と対応するラベルを生成する技術であるHandsOffフレームワークを紹介する。
本フレームワークは,GANインバージョンフィールドとデータセット生成を統一することにより,先行作業の現実的な欠点を回避する。
顔、車、フルボディの人間のポーズ、都市運転シーンなど、複数の挑戦的な領域において、リッチなピクセルワイズラベルを持つデータセットを生成します。
- 参考スコア(独自算出の注目度): 13.11411442720668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work leverages the expressive power of generative adversarial networks
(GANs) to generate labeled synthetic datasets. These dataset generation methods
often require new annotations of synthetic images, which forces practitioners
to seek out annotators, curate a set of synthetic images, and ensure the
quality of generated labels. We introduce the HandsOff framework, a technique
capable of producing an unlimited number of synthetic images and corresponding
labels after being trained on less than 50 pre-existing labeled images. Our
framework avoids the practical drawbacks of prior work by unifying the field of
GAN inversion with dataset generation. We generate datasets with rich
pixel-wise labels in multiple challenging domains such as faces, cars,
full-body human poses, and urban driving scenes. Our method achieves
state-of-the-art performance in semantic segmentation, keypoint detection, and
depth estimation compared to prior dataset generation approaches and transfer
learning baselines. We additionally showcase its ability to address broad
challenges in model development which stem from fixed, hand-annotated datasets,
such as the long-tail problem in semantic segmentation. Project page:
austinxu87.github.io/handsoff.
- Abstract(参考訳): 最近の研究では、ジェネレーティブ・アドバーサリアン・ネットワーク(gans)の表現力を利用してラベル付き合成データセットを生成する。
これらのデータセット生成方法は、しばしば合成画像の新しいアノテーションを必要とするため、実践者はアノテーションを探し出し、合成画像の集合をキュレートし、生成されたラベルの品質を保証する。
我々は,50枚未満のラベル付き画像でトレーニングした後,無制限に多数の合成画像と対応するラベルを生成する技術であるHandsOffフレームワークを紹介する。
本フレームワークは,GANインバージョンフィールドとデータセット生成を統一することにより,先行作業の現実的な欠点を回避する。
顔、車、フルボディの人間のポーズ、都市運転シーンなど、複数の挑戦的な領域において、リッチなピクセルワイズラベルを持つデータセットを生成します。
本手法は,従来のデータセット生成手法や伝達学習ベースラインと比較して,セマンティックセグメンテーション,キーポイント検出,深さ推定における最先端性能を実現する。
さらに、セマンティックセグメンテーションにおけるロングテール問題など、固定された手書きのデータセットに由来するモデル開発における幅広い課題に対処する能力についても紹介する。
プロジェクトページ: austinxu87.github.io/handsoff
関連論文リスト
- Enhanced Generative Data Augmentation for Semantic Segmentation via Stronger Guidance [1.2923961938782627]
制御可能拡散モデルを用いたセマンティックセグメンテーションのための効果的なデータ拡張手法を提案する。
提案手法は,クラス・プロンプト・アペンディングとビジュアル・プリミティブ・コンバインドを用いた効率的なプロンプト生成を含む。
提案手法をPASCAL VOCデータセット上で評価した結果,セマンティックセグメンテーションにおける画像の合成に極めて有効であることが判明した。
論文 参考訳(メタデータ) (2024-09-09T19:01:14Z) - Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets [51.74296438621836]
Scribbles for Allは、スクリブルラベルに基づいて訓練されたセマンティックセグメンテーションのためのラベルおよびトレーニングデータ生成アルゴリズムである。
弱い監督の源泉としてのスクリブルの主な制限は、スクリブルセグメンテーションのための挑戦的なデータセットの欠如である。
Scribbles for Allは、いくつかの人気のあるセグメンテーションデータセットのスクリブルラベルを提供し、密集したアノテーションを持つデータセットのスクリブルラベルを自動的に生成するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-08-22T15:29:08Z) - Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
本稿では,現実的な画像を生成するセマンティック画像合成のための新しい種類のGAN識別器を提案する。
DP-SIMSをダブした本モデルでは,ADE-20K,COCO-Stuff,Cityscapesの入力ラベルマップと画像品質と一貫性の両面から,最新の結果が得られる。
論文 参考訳(メタデータ) (2023-12-20T09:39:19Z) - Dataset Diffusion: Diffusion-based Synthetic Dataset Generation for
Pixel-Level Semantic Segmentation [6.82236459614491]
テキストから画像への生成モデルであるStable Diffusionを用いて,ピクセルレベルのセマンティックセマンティックセマンティクスラベルを生成する手法を提案する。
テキストプロンプト,クロスアテンション,SDの自己アテンションを活用することで,クラスプロンプト付加,クラスプロンプト横断アテンション,自己アテンション指数の3つの新しい手法を導入する。
これらの手法により合成画像に対応するセグメンテーションマップを生成することができる。
論文 参考訳(メタデータ) (2023-09-25T17:19:26Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
多様な合成画像や知覚アノテーションを生成できる汎用データセット生成モデルを提案する。
本手法は,事前学習した拡散モデルに基づいて,テキスト誘導画像合成を知覚データ生成に拡張する。
拡散モデルのリッチ潜時コードはデコーダモジュールを用いて正確な認識アノテーションとして効果的に復号できることを示す。
論文 参考訳(メタデータ) (2023-08-11T14:38:11Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Data Generation for Satellite Image Classification Using Self-Supervised
Representation Learning [0.0]
衛星画像パッチの合成ラベルを作成するための自己教師付き学習手法を提案する。
これらの合成ラベルは、既存の教師付き学習技術のトレーニングデータセットとして使用することができる。
実験では,合成ラベルで訓練されたモデルが実ラベルで訓練されたモデルと類似した性能を示すことを示した。
論文 参考訳(メタデータ) (2022-05-28T12:54:34Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
本稿では、識別器アーキテクチャを再考することにより、生成画像の品質を向上させることを提案する。
シーンセグメンテーションマップや人体ポーズといったセマンティックインプットによって画像が生成されるという問題に焦点が当てられている。
我々は,意味的セグメンテーション,コンテンツ再構成,および粗い粒度の逆解析を行うのに十分な情報をエンコードする,共有潜在表現を学習することを目指している。
論文 参考訳(メタデータ) (2021-12-09T18:59:21Z) - DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort [117.41383937100751]
現在のディープネットワークは、大規模なデータセットのトレーニングの恩恵を受ける、非常にデータハングリーです。
GAN潜入コードがどのようにデコードされ、イメージのセマンティックセグメンテーションを生成するかを示す。
これらの生成されたデータセットは、実際のデータセットと同じように、コンピュータビジョンアーキテクチャのトレーニングに使用できます。
論文 参考訳(メタデータ) (2021-04-13T20:08:29Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。