GraffMatch: Global Matching of 3D Lines and Planes for Wide Baseline
LiDAR Registration
- URL: http://arxiv.org/abs/2212.12745v1
- Date: Sat, 24 Dec 2022 15:02:15 GMT
- Title: GraffMatch: Global Matching of 3D Lines and Planes for Wide Baseline
LiDAR Registration
- Authors: Parker C. Lusk, Devarth Parikh, Jonathan P. How
- Abstract summary: Using geometric landmarks like lines and planes can increase navigation accuracy and decrease map storage requirements.
However, landmark-based registration for applications like loop closure detection is challenging because a reliable initial guess is not available.
We adopt the affine Grassmannian manifold to represent 3D lines and planes and prove that the distance between two landmarks is invariant to rotation and translation.
- Score: 41.00550745153015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using geometric landmarks like lines and planes can increase navigation
accuracy and decrease map storage requirements compared to commonly-used LiDAR
point cloud maps. However, landmark-based registration for applications like
loop closure detection is challenging because a reliable initial guess is not
available. Global landmark matching has been investigated in the literature,
but these methods typically use ad hoc representations of 3D line and plane
landmarks that are not invariant to large viewpoint changes, resulting in
incorrect matches and high registration error. To address this issue, we adopt
the affine Grassmannian manifold to represent 3D lines and planes and prove
that the distance between two landmarks is invariant to rotation and
translation if a shift operation is performed before applying the Grassmannian
metric. This invariance property enables the use of our graph-based data
association framework for identifying landmark matches that can subsequently be
used for registration in the least-squares sense. Evaluated on a challenging
landmark matching and registration task using publicly-available LiDAR
datasets, our approach yields a 1.7x and 3.5x improvement in successful
registrations compared to methods that use viewpoint-dependent centroid and
"closest point" representations, respectively.
Related papers
- Coupled Laplacian Eigenmaps for Locally-Aware 3D Rigid Point Cloud Matching [0.0]
We propose a new technique, based on graph Laplacian eigenmaps, to match point clouds by taking into account fine local structures.
To deal with the order and sign ambiguity of Laplacian eigenmaps, we introduce a new operator, called Coupled Laplacian.
We show that the similarity between those aligned high-dimensional spaces provides a locally meaningful score to match shapes.
arXiv Detail & Related papers (2024-02-27T10:10:12Z) - Measuring the Discrepancy between 3D Geometric Models using Directional
Distance Fields [98.15456815880911]
We propose DirDist, an efficient, effective, robust, and differentiable distance metric for 3D geometry data.
As a generic distance metric, DirDist has the potential to advance the field of 3D geometric modeling.
arXiv Detail & Related papers (2024-01-18T05:31:53Z) - A Unified BEV Model for Joint Learning of 3D Local Features and Overlap
Estimation [12.499361832561634]
We present a unified bird's-eye view (BEV) model for jointly learning of 3D local features and overlap estimation.
Our method significantly outperforms existing methods on overlap prediction, especially in scenes with small overlaps.
arXiv Detail & Related papers (2023-02-28T12:01:16Z) - Ground Plane Matters: Picking Up Ground Plane Prior in Monocular 3D
Object Detection [92.75961303269548]
The ground plane prior is a very informative geometry clue in monocular 3D object detection (M3OD)
We propose a Ground Plane Enhanced Network (GPENet) which resolves both issues at one go.
Our GPENet can outperform other methods and achieve state-of-the-art performance, well demonstrating the effectiveness and the superiority of the proposed approach.
arXiv Detail & Related papers (2022-11-03T02:21:35Z) - Fiducial Tag Localization on a 3D LiDAR Prior Map [0.6554326244334868]
The existing LiDAR fiducial tag localization methods do not apply to 3D LiDAR maps.
We develop a novel approach to directly localize fiducial tags on a 3D LiDAR prior map.
We conduct both qualitative and quantitative experiments to demonstrate that our approach is the first method applicable to localize tags on a 3D LiDAR map.
arXiv Detail & Related papers (2022-09-02T14:07:25Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - Supervision by Registration and Triangulation for Landmark Detection [70.13440728689231]
We present Supervision by Registration and Triangulation (SRT), an unsupervised approach that utilizes unlabeled multi-view video to improve the accuracy and precision of landmark detectors.
Being able to utilize unlabeled data enables our detectors to learn from massive amounts of unlabeled data freely available.
arXiv Detail & Related papers (2021-01-25T02:48:21Z) - Canny-VO: Visual Odometry with RGB-D Cameras based on Geometric 3D-2D
Edge Alignment [85.32080531133799]
This paper reviews the classical problem of free-form curve registration and applies it to an efficient RGBD visual odometry system called Canny-VO.
Two replacements for the distance transformation commonly used in edge registration are proposed: Approximate Nearest Neighbour Fields and Oriented Nearest Neighbour Fields.
3D2D edge alignment benefits from these alternative formulations in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2020-12-15T11:42:17Z) - Gaussian Process Gradient Maps for Loop-Closure Detection in
Unstructured Planetary Environments [17.276441789710574]
The ability to recognize previously mapped locations is an essential feature for autonomous systems.
Unstructured planetary-like environments pose a major challenge to these systems due to the similarity of the terrain.
This paper presents a method to solve the loop closure problem using only spatial information.
arXiv Detail & Related papers (2020-09-01T04:41:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.