Agent-based Modeling and Simulation of Human Muscle For Development of
Human Gait Analyzer Application
- URL: http://arxiv.org/abs/2212.12760v2
- Date: Tue, 5 Mar 2024 14:26:52 GMT
- Title: Agent-based Modeling and Simulation of Human Muscle For Development of
Human Gait Analyzer Application
- Authors: Sina Saadati, Mohammadreza Razzazi
- Abstract summary: The application can be used by clinical experts to distinguish between healthy and unhealthy muscles.
Boots algorithm is designed based on a biomechanical model of human lower body to do a reverse dynamics of human motion.
- Score: 1.0878040851638
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the fact that only a small portion of muscles are affected in motion
disease and disorders, medical therapies do not distinguish between healthy and
unhealthy muscles. In this paper, a method is devised in order to calculate the
neural stimuli of the lower body during gait cycle and check if any group of
muscles are not acting properly. For this reason, an agent-based model of human
muscle is proposed. The agent is able to convert neural stimuli to force
generated by the muscle and vice versa. It can be used in many researches
including medical education and research and prosthesis development. Then,
Boots algorithm is designed based on a biomechanical model of human lower body
to do a reverse dynamics of human motion by computing the forces generated by
each muscle group. Using the agent-driven model of human muscle and boots
algorithm, a user-friendly application is developed which can calculate the
number of neural stimuli received by each muscle during gait cycle. The
application can be used by clinical experts to distinguish between healthy and
unhealthy muscles.
Related papers
- Muscles in Time: Learning to Understand Human Motion by Simulating Muscle Activations [64.98299559470503]
Muscles in Time (MinT) is a large-scale synthetic muscle activation dataset.
It contains over nine hours of simulation data covering 227 subjects and 402 simulated muscle strands.
We show results on neural network-based muscle activation estimation from human pose sequences.
arXiv Detail & Related papers (2024-10-31T18:28:53Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - Self Model for Embodied Intelligence: Modeling Full-Body Human Musculoskeletal System and Locomotion Control with Hierarchical Low-Dimensional Representation [22.925312305575183]
We build a musculoskeletal model (MS-Human-700) with 90 body segments, 206 joints, and 700 muscle-tendon units.
We develop a new algorithm using low-dimensional representation and hierarchical deep reinforcement learning to achieve state-of-the-art full-body control.
arXiv Detail & Related papers (2023-12-09T05:42:32Z) - Muscles in Action [22.482090207522358]
We present a new dataset, Muscles in Action (MIA), to learn to incorporate muscle activity into human motion representations.
We learn a bidirectional representation that predicts muscle activation from video, and conversely, reconstructs motion from muscle activation.
Putting muscles into computer vision systems will enable richer models of virtual humans, with applications in sports, fitness, and AR/VR.
arXiv Detail & Related papers (2022-12-05T16:47:09Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
Modern deep learning based motion synthesis approaches barely consider the physical plausibility of synthesized motions.
We propose a system Skeleton2Humanoid'' which performs physics-oriented motion correction at test time.
Experiments on the challenging LaFAN1 dataset show our system can outperform prior methods significantly in terms of both physical plausibility and accuracy.
arXiv Detail & Related papers (2022-10-09T16:15:34Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - From Motion to Muscle [0.0]
We show that muscle activity can be artificially generated based on motion features such as position, velocity, and acceleration.
The model achieves remarkable precision for previously trained movements and maintains significantly high precision for new movements that have not been previously trained.
arXiv Detail & Related papers (2022-01-27T13:30:17Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
We propose a novel neural implicit representation for the human body.
It is fully differentiable and optimizable with disentangled shape and pose latent spaces.
Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses.
arXiv Detail & Related papers (2021-11-30T04:10:57Z) - Learning Control Policies for Imitating Human Gaits [2.28438857884398]
Humans exhibit movements like walking, running, and jumping in the most efficient manner, which served as the source of motivation for this project.
Skeletal and Musculoskeletal human models were considered for motions in the sagittal plane.
Model-free reinforcement learning algorithms were used to optimize inverse dynamics control actions.
arXiv Detail & Related papers (2021-05-15T16:33:24Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Reinforcement Learning of Musculoskeletal Control from Functional
Simulations [3.94716580540538]
In this work, a deep reinforcement learning (DRL) based inverse dynamics controller is trained to control muscle activations of a biomechanical model of the human shoulder.
Results are presented for a single-axis motion control of shoulder abduction for the task of following randomly generated angular trajectories.
arXiv Detail & Related papers (2020-07-13T20:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.