A Bayesian Robust Regression Method for Corrupted Data Reconstruction
- URL: http://arxiv.org/abs/2212.12787v1
- Date: Sat, 24 Dec 2022 17:25:53 GMT
- Title: A Bayesian Robust Regression Method for Corrupted Data Reconstruction
- Authors: Fan Zheyi, Li Zhaohui, Wang Jingyan, Xiong Xiao, Hu Qingpei
- Abstract summary: We develop an effective robust regression method that can resist adaptive adversarial attacks.
First, we propose the novel TRIP (hard Thresholding approach to Robust regression with sImple Prior) algorithm.
We then use the idea of Bayesian reweighting to construct the more robust BRHT (robust Bayesian Reweighting regression via Hard Thresholding) algorithm.
- Score: 5.298637115178182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Because of the widespread existence of noise and data corruption, recovering
the true regression parameters with a certain proportion of corrupted response
variables is an essential task. Methods to overcome this problem often involve
robust least-squares regression, but few methods perform well when confronted
with severe adaptive adversarial attacks. In many applications, prior knowledge
is often available from historical data or engineering experience, and by
incorporating prior information into a robust regression method, we develop an
effective robust regression method that can resist adaptive adversarial
attacks. First, we propose the novel TRIP (hard Thresholding approach to Robust
regression with sImple Prior) algorithm, which improves the breakdown point
when facing adaptive adversarial attacks. Then, to improve the robustness and
reduce the estimation error caused by the inclusion of priors, we use the idea
of Bayesian reweighting to construct the more robust BRHT (robust Bayesian
Reweighting regression via Hard Thresholding) algorithm. We prove the
theoretical convergence of the proposed algorithms under mild conditions, and
extensive experiments show that under different types of dataset attacks, our
algorithms outperform other benchmark ones. Finally, we apply our methods to a
data-recovery problem in a real-world application involving a space solar
array, demonstrating their good applicability.
Related papers
- Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery [0.0]
We focus on distributed estimation and support recovery for high-dimensional linear quantile regression.
We transform the original quantile regression into the least-squares optimization.
An efficient algorithm is developed, which enjoys high computation and communication efficiency.
arXiv Detail & Related papers (2024-05-13T08:32:22Z) - Towards Practical Robustness Auditing for Linear Regression [8.9598796481325]
We investigate algorithms to find or disprove the existence of small subsets of a dataset.
We show that these methods largely outperform the state of the art and provide a useful robustness check for regression problems in a few dimensions.
We make some headway on this challenge via a spectral algorithm using ideas drawn from recent innovations in algorithmic robust statistics.
arXiv Detail & Related papers (2023-07-30T20:47:36Z) - Shuffled linear regression through graduated convex relaxation [12.614901374282868]
The shuffled linear regression problem aims to recover linear relationships in datasets where the correspondence between input and output is unknown.
This problem arises in a wide range of applications including survey data.
We propose a novel optimization algorithm for shuffled linear regression based on a posterior-maximizing objective function.
arXiv Detail & Related papers (2022-09-30T17:33:48Z) - Meta Adversarial Perturbations [66.43754467275967]
We show the existence of a meta adversarial perturbation (MAP)
MAP causes natural images to be misclassified with high probability after being updated through only a one-step gradient ascent update.
We show that these perturbations are not only image-agnostic, but also model-agnostic, as a single perturbation generalizes well across unseen data points and different neural network architectures.
arXiv Detail & Related papers (2021-11-19T16:01:45Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Robust Regression Revisited: Acceleration and Improved Estimation Rates [25.54653340884806]
We study fast algorithms for statistical regression problems under the strong contamination model.
The goal is to approximately optimize a generalized linear model (GLM) given adversarially corrupted samples.
We present nearly-linear time algorithms for robust regression problems with improved runtime or estimation guarantees.
arXiv Detail & Related papers (2021-06-22T17:21:56Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - TFPose: Direct Human Pose Estimation with Transformers [83.03424247905869]
We formulate the pose estimation task into a sequence prediction problem that can effectively be solved by transformers.
Our framework is simple and direct, bypassing the drawbacks of the heatmap-based pose estimation.
Experiments on the MS-COCO and MPII datasets demonstrate that our method can significantly improve the state-of-the-art of regression-based pose estimation.
arXiv Detail & Related papers (2021-03-29T04:18:54Z) - A Hypergradient Approach to Robust Regression without Correspondence [85.49775273716503]
We consider a variant of regression problem, where the correspondence between input and output data is not available.
Most existing methods are only applicable when the sample size is small.
We propose a new computational framework -- ROBOT -- for the shuffled regression problem.
arXiv Detail & Related papers (2020-11-30T21:47:38Z) - Robust priors for regularized regression [12.945710636153537]
Penalized regression approaches like ridge regression shrink toward zero but zero weights is usually not a sensible prior.
Inspired by simple and robust decisions humans use, we constructed non-zero priors for penalized regression models.
Models with robust priors had excellent worst-case performance.
arXiv Detail & Related papers (2020-10-06T10:43:14Z) - Fast OSCAR and OWL Regression via Safe Screening Rules [97.28167655721766]
Ordered $L_1$ (OWL) regularized regression is a new regression analysis for high-dimensional sparse learning.
Proximal gradient methods are used as standard approaches to solve OWL regression.
We propose the first safe screening rule for OWL regression by exploring the order of the primal solution with the unknown order structure.
arXiv Detail & Related papers (2020-06-29T23:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.