Chiral state transfer under dephasing
- URL: http://arxiv.org/abs/2212.12868v2
- Date: Tue, 27 Dec 2022 03:15:17 GMT
- Title: Chiral state transfer under dephasing
- Authors: Konghao Sun and Wei Yi
- Abstract summary: We study the effects of dephasing on the encircling dynamics, adopting the full Lindblad master equation.
We show that gaps emerge in the eigenspectra landscape of the corresponding Liouvillian superoperator.
While our results are applicable to several recent experiments, we examine a recent cold-atom experiment in particular, and show that the observed long-time chirality is but limited to the special encircling path therein.
- Score: 0.228438857884398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exceptional points emerge in the complex eigenspecra of non-Hermitian
systems, and give rise to rich critical behaviors. An outstanding example is
the chiral state transfer, where states can swap under an adiabatic encircling
around the exceptional point, but only along one direction. In dissipative
quantum systems, such exceptional-point encirclings are often accompanied by
decoherence, whose impact is beyond the description of non-Hermitian
Hamiltonians. In this work, we study in detail the effects of dephasing on the
encircling dynamics, adopting the full Lindblad master equation. Introducing
experimentally relevant quantum-jump processes that account for dephasing, we
show that gaps emerge in the eigenspectra landscape of the corresponding
Liouvillian superoperator. It follows that the chiral state transfer does not
take place in the adiabatic limit, since the system always adiabatically
follows the quasi-steady state of the Liouvillian regardless of the encircling
direction. Nevertheless, the chirality is restored at intermediate encircling
times, where the dynamics is non-adiabatic in both encircling directions,
distinct from the typical chiral state transfer in non-Hermitian systems. While
our results are applicable to several recent experiments, we examine a recent
cold-atom experiment in particular, and show that the observed long-time
chirality is but limited to the special encircling path therein. Our study
provides further insight into the chiral state transfer under experimental
conditions, and is helpful for controlling open-system dynamics from the
perspective of non-Hermitian physics.
Related papers
- Encircling the Liouvillian exceptional points: a brief review [1.5596062401801003]
Liouvillian exceptional points often have distinct properties compared to their counterparts in non-Hermitian Hamiltonians.
Since the Liouvillian exceptional points widely exist in quantum systems such as the atomic vapours, superconducting qubits, and ultracold ions and atoms, they have received increasing amount of attention of late.
arXiv Detail & Related papers (2024-08-21T08:46:04Z) - Signatures of quantum phases in a dissipative system [13.23575512928342]
Lindbladian formalism has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems.
We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model.
arXiv Detail & Related papers (2023-12-28T17:53:26Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Localization control born of intertwined quasiperiodicity and
non-Hermiticity [0.0]
We show for the first time that the intertwined quasiperiodicity and non-Hermiticity can give rise to striking effects.
In particular, we explore the wave function localization character in the Aubry-Andre-Fibonacci (AAF) model.
arXiv Detail & Related papers (2022-11-25T19:00:05Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Decoherence Induced Exceptional Points in a Dissipative Superconducting
Qubit [0.31171750528972203]
Open quantum systems interacting with an environment exhibit dynamics described by the combination of dissipation and coherent Hamiltonian evolution.
The degeneracies of the (generically non-Hermitian) Liouvillian are exceptional points, which are associated with critical dynamics as the system approaches steady state.
We use a superconducting transmon circuit coupled to an engineered environment to observe two different types of Liouvillian exceptional points that arise either from the interplay of energy loss and decoherence or purely due to decoherence.
arXiv Detail & Related papers (2021-11-08T19:00:02Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Disorder in dissipation-induced topological states: Evidence for a
different type of localization transition [0.0]
We study the effect of disorder on dissipation-introduced Chern topological states.
We show that the critical exponent $nu$ describing the divergence of the localization length upon approaching the delocalized state is significantly different from equilibrium if disorder is introduced into the non-dissipative part of the dynamics.
arXiv Detail & Related papers (2020-11-19T09:11:33Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.