Transient Dynamics of the Quantum Stuart-Landau Oscillator
- URL: http://arxiv.org/abs/2406.12337v4
- Date: Fri, 25 Jul 2025 07:20:00 GMT
- Title: Transient Dynamics of the Quantum Stuart-Landau Oscillator
- Authors: Hendry M. Lim, Donny Dwiputra, M Shoufie Ukhtary, Ahmad R. T. Nugraha,
- Abstract summary: We investigate the transient dynamics of a quantum system exhibiting a limit cycle and synchronization.<n>We characterize the classical-like behavior as the system evolves from a coherent state.<n>We quantify the time it takes to reach the steady state for some Fock, thermal, and coherent states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the transient dynamics of the quantum Stuart-Landau oscillator, a paradigmatic quantum system exhibiting a quantum limit cycle and synchronization. From the energy dynamics, we determine a condition for the classical regime of transient dynamics and the limit cycle. Additionally, we formulate a guess function that fits the classical-regime steady-state Wigner function. The equation of motion for the Wigner function is derived and compared to the Kramers-Moyal equation for stochastic processes. We then characterize the classical-like behavior as the system evolves from a coherent state, noting the slow decay of neighboring-level coherence. We also study the evolution of the Wigner negativity as an indicator of nonclassicality, showing its temporary increase for some specific cases. To quantify the evolution speed, we examined the system's Lindbladian spectra, particularly the Liouvillian gap. Finally, we record the time it takes to reach the steady state for some Fock, thermal, and coherent states. The parameter dependence of the steady-state time may differ from the Liouvillian gap, and the limit-cycle attraction is significantly slower for coherent states compared to Fock or thermal states. For the diagonal states, there are speedy parameters for which the steady-state time is locally minimized. This study provides a deeper insight into the transient behavior of self-sustained quantum systems.
Related papers
- Bridging the classical and quantum regimes in a dissipative Ising chain [1.4331899140173205]
We study the long-time dynamics of a dissipative Ising chain with varying quantum correlation.<n>In particular, we illustrate how the classical limit-cycle behavior gradually disappears with the increase of quantum correlation.
arXiv Detail & Related papers (2025-05-29T04:59:42Z) - Generalized Entropic Quantum Speed Limits [0.0]
We present a class of generalized entropic quantum speed limits based on $alpha$-$z$-R'enyi relative entropy.
Results cover pure or mixed, separable and entangled probe quantum states.
arXiv Detail & Related papers (2025-01-19T13:51:18Z) - Powering a quantum clock with a non-equilibrium steady state [50.24983453990065]
We propose powering a quantum clock with the non-thermal resources offered by the stationary state of an integrable quantum spin chain.
Using experimentally relevant examples of quantum spin chains, we suggest crossing a phase transition point is crucial for optimal performance.
arXiv Detail & Related papers (2024-12-17T17:25:11Z) - Self-interaction induced phase modulation for directed current, energy diffusion and quantum scrambling in a Floquet ratchet system [0.0]
We investigate the dynamics of directed current, mean energy, and quantum scrambling in an interacting Floquet system with a ratchet potential.
The directed current is controlled by the phase of the ratchet potential and remains independent of the self-interaction strength.
The phase modulation induced by self-interaction dominates the quadratic growth of both mean energy and Out-of-Time-Ordered Correlators (OTOCs)
arXiv Detail & Related papers (2024-11-01T22:17:24Z) - Unitary description of the Jaynes-Cummings model under fractional-time dynamics [0.0]
We show that a unitary evolution can be achieved for a traceless two-level Hamiltonian.
We take into account the fractional-order parameter $alpha$ and its effect in unitary quantum dynamics.
arXiv Detail & Related papers (2024-09-09T17:44:31Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Signatures of quantum phases in a dissipative system [13.23575512928342]
Lindbladian formalism has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems.
We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model.
arXiv Detail & Related papers (2023-12-28T17:53:26Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Orbit quantization in a retarded harmonic oscillator [0.0]
We analytically predict the value of the first Hopf bifurcation, unleashing a self-oscillatory motion.
When the system is driven very far from equilibrium, a multiscale strange attractor displaying intrinsic and robust intermittency is uncovered.
arXiv Detail & Related papers (2023-01-25T04:47:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum trajectories of dissipative time-crystals [0.0]
We show that the photon count signal as well as the homodyne current allow to identify and characterize critical behavior at the time-crystal phase transition.
The average time between these fluctuation events shows a power-law scaling with system size.
We furthermore show that the time-integrated homodyne current can serve as a useful dynamical order parameter.
arXiv Detail & Related papers (2022-12-13T10:20:00Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum behavior of a superconducting Duffing oscillator at the
dissipative phase transition [0.817918559522319]
We reconcile the classical and quantum descriptions in a unified picture of quantum metastability.
By engineering the lifetime of the metastable states sufficiently large, we observe a first-order dissipative phase transition.
Results reveal a smooth quantum evolution behind a sudden dissipative transition.
arXiv Detail & Related papers (2022-06-13T17:35:27Z) - Metastable discrete time-crystal resonances in a dissipative central
spin system [0.0]
Generalizing the theory of metastability in open quantum systems, we develop an effective description for the evolution within a long-lived metastable subspace.
Our study links to timely questions concerning emergent collective behavior in the 'prethermal' stage of a dissipative quantum many-body evolution.
arXiv Detail & Related papers (2022-05-23T12:27:09Z) - Shortcuts to adiabatic population inversion via time-rescaling:
stability and thermodynamic cost [0.0]
We study the problem of speeding up the population inversion of a two-level quantum system.
The fidelity of the dynamics versus systematic errors in the control parameters are shown to be comparable with other STA schemes.
arXiv Detail & Related papers (2022-04-29T20:27:02Z) - Dynamical Crossover from Markovian to Non-Markovian dynamics in the
strong coupling regime [0.0]
We study the dynamics of the coherent state, squeezed state, and displaced squeezed state.
All the states exhibit Markovian evolution in the weak coupling limit.
In the strong coupling limit, the dynamics for the initial period is Markovian and after a certain period, it becomes non-Markovian.
arXiv Detail & Related papers (2022-01-19T16:08:56Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Noise-Resilient Phase Transitions and Limit-Cycles in Coupled Kerr
Oscillators [0.0]
Driven-dissipative quantum many-body systems have been the subject of many studies in recent years.
We investigate the Green's function and correlation of the cavity modes in different regions.
Our results shed light on the emergence of dissipative phase transitions in open quantum systems.
arXiv Detail & Related papers (2021-06-08T01:46:01Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Performance Evaluation of Adiabatic Quantum Computation via Quantum
Speed Limits and Possible Applications to Many-Body Systems [0.0]
We find a bound of the fidelity between the adiabatic state and the time-evolved state.
The bound is characterized by the counterdiabatic Hamiltonian.
We derive a different type of quantum speed limits that is meaningful even when we take the thermodynamic limit.
arXiv Detail & Related papers (2019-12-27T04:12:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.