Intrinsically Interacting Higher-Order Topological Superconductors
- URL: http://arxiv.org/abs/2212.13013v2
- Date: Mon, 14 Aug 2023 11:45:00 GMT
- Title: Intrinsically Interacting Higher-Order Topological Superconductors
- Authors: Hao-Ran Zhang, Jian-Hao Zhang, Zheng-Cheng Gu, Rui-Xing Zhang, Shuo
Yang
- Abstract summary: We propose a minimal interacting lattice model for two-dimensional class-$D$ higher-order topological superconductors.
A Lieb-Schultz-Mattis-type constraint is proposed and applied to guide our lattice model construction.
- Score: 19.52773844535185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a minimal interacting lattice model for two-dimensional class-$D$
higher-order topological superconductors with no free-fermion counterpart. A
Lieb-Schultz-Mattis-type constraint is proposed and applied to guide our
lattice model construction. Our model exhibits a trivial product ground state
in the weakly interacting regime, whereas, increasing electron interactions
provoke a novel topological quantum phase transition to a $D_4$-symmetric
higher-order topological superconducting state. The symmetry-protected Majorana
corner modes are numerically confirmed with the matrix-product-state technique.
Our theory paves the way for studying interacting higher-order topology with
explicit lattice model constructions.
Related papers
- Double-quantum-dot Andreev molecules: Phase diagrams and critical evaluation of effective models [0.0]
This work systematically investigates the phase diagram of a parallel double-quantum-dot Andreev molecule.
We map out the evolution of the ground state across a wide parameter space of level detunings, size of the superconducting gap, lead couplings, and inter-dot coupling strength.
arXiv Detail & Related papers (2024-07-29T14:27:42Z) - Theory of $d + id$ Second-Order Topological Superconductors [9.85377596401486]
We study the realization of second-order topology that defines anomalous gapless boundary modes in a two-orbital superconductor.
We reveal a time-reversal symmetry-breaking second-order topological superconducting phase with $d+id$-wave orbital-dependent paring.
Our work not only reveals a unique mechanism of time-reversal symmetry breaking second-order topological superconductors but also bridges the gap between second-order topology and orbital-dependent pairings.
arXiv Detail & Related papers (2023-10-27T09:06:12Z) - Superconductivity in a Topological Lattice Model with Strong Repulsion [1.1305119700024195]
We introduce a minimal 2D lattice model that incorporates time-reversal symmetry, band topology, and strong repulsive interactions.
We demonstrate that it is formed from the weak pairing of holes atop the QSH insulator.
Motivated by this, we elucidate structural similarities and differences between our model and those of TBG in its chiral limit.
arXiv Detail & Related papers (2023-08-21T18:00:01Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Kane-Mele with a twist: Quasicrystalline higher-order topological
insulators with fractional mass kinks [0.0]
We show that localized modes at corners, characteristic of a HOTI, are not associated with conventional mass inversions.
We also derive a relationship between corner modes in a bilayer and disclination modes in a single layer.
arXiv Detail & Related papers (2020-01-15T19:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.