Towards Improved Prediction of Ship Performance: A Comparative Analysis
on In-service Ship Monitoring Data for Modeling the Speed-Power Relation
- URL: http://arxiv.org/abs/2212.13061v1
- Date: Mon, 26 Dec 2022 09:39:33 GMT
- Title: Towards Improved Prediction of Ship Performance: A Comparative Analysis
on In-service Ship Monitoring Data for Modeling the Speed-Power Relation
- Authors: Simon DeKeyser, Casimir Morob\'e, Malte Mittendorf
- Abstract summary: We compare the accuracy of data-driven machine learning algorithms to traditional methods for assessing ship performance.
Our results showed that a simple neural network outperformed established semi-empirical formulas following first principles.
These findings suggest that data-driven algorithms may be more effective for predicting ship performance in practical applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate modeling of ship performance is crucial for the shipping industry to
optimize fuel consumption and subsequently reduce emissions. However,
predicting the speed-power relation in real-world conditions remains a
challenge. In this study, we used in-service monitoring data from multiple
vessels with different hull shapes to compare the accuracy of data-driven
machine learning (ML) algorithms to traditional methods for assessing ship
performance. Our analysis consists of two main parts: (1) a comparison of sea
trial curves with calm-water curves fitted on operational data, and (2) a
benchmark of multiple added wave resistance theories with an ML-based approach.
Our results showed that a simple neural network outperformed established
semi-empirical formulas following first principles. The neural network only
required operational data as input, while the traditional methods required
extensive ship particulars that are often unavailable. These findings suggest
that data-driven algorithms may be more effective for predicting ship
performance in practical applications.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
We present a novel deep-learning method called Federated Learning and Asynchronous Graph Convolutional Networks (FLAGCN)
Our framework incorporates the principles of asynchronous graph convolutional networks with federated learning to enhance accuracy and efficiency of real-time traffic flow prediction.
arXiv Detail & Related papers (2024-01-05T09:36:42Z) - Fuel Consumption Prediction for a Passenger Ferry using Machine Learning
and In-service Data: A Comparative Study [5.516843968790116]
This paper presents models that can predict fuel consumption using in-service data collected from a passenger ship.
The best predictive performance was from a model developed using the XGboost technique which is a boosting ensemble approach.
arXiv Detail & Related papers (2023-10-19T19:35:38Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
It aims to develop reduced-order/surrogate models for turbulent flow simulations using Machine Learning.
Different model structures are analyzed, with U-NET structures performing better than the standard FNO in accuracy and stability.
arXiv Detail & Related papers (2023-07-25T14:09:53Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - How Well Do Sparse Imagenet Models Transfer? [75.98123173154605]
Transfer learning is a classic paradigm by which models pretrained on large "upstream" datasets are adapted to yield good results on "downstream" datasets.
In this work, we perform an in-depth investigation of this phenomenon in the context of convolutional neural networks (CNNs) trained on the ImageNet dataset.
We show that sparse models can match or even outperform the transfer performance of dense models, even at high sparsities.
arXiv Detail & Related papers (2021-11-26T11:58:51Z) - Ship Performance Monitoring using Machine-learning [2.1485350418225244]
The hydrodynamic performance of a sea-going ship varies over its lifespan due to factors like marine fouling and the condition of the anti-fouling paint system.
The current work uses machine-learning (ML) methods to estimate the hydrodynamic performance of a ship using the onboard recorded in-service data.
arXiv Detail & Related papers (2021-10-07T16:18:16Z) - Physics-Informed Deep Learning for Traffic State Estimation [3.779860024918729]
Traffic state estimation (TSE) reconstructs the traffic variables (e.g., density) on road segments using partially observed data.
This paper introduces a physics-informed deep learning (PIDL) framework to efficiently conduct high-quality TSE with small amounts of observed data.
arXiv Detail & Related papers (2021-01-17T03:28:32Z) - Operator Inference and Physics-Informed Learning of Low-Dimensional
Models for Incompressible Flows [5.756349331930218]
We suggest a new approach to learning structured low-order models for incompressible flow from data.
We show that learning dynamics of the velocity and pressure can be decoupled, thus leading to an efficient operator inference approach.
arXiv Detail & Related papers (2020-10-13T21:26:19Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.