Physics-Informed Neural Networks for Vessel Trajectory Prediction: Learning Time-Discretized Kinematic Dynamics via Finite Differences
- URL: http://arxiv.org/abs/2506.12029v1
- Date: Thu, 22 May 2025 15:09:25 GMT
- Title: Physics-Informed Neural Networks for Vessel Trajectory Prediction: Learning Time-Discretized Kinematic Dynamics via Finite Differences
- Authors: Md Mahbub Alam, Amilcar Soares, José F. Rodrigues-Jr, Gabriel Spadon,
- Abstract summary: Accurate vessel trajectory prediction is crucial for navigational safety, route optimization, traffic management, search and rescue operations, and autonomous navigation.<n>Traditional data-driven models lack real-world physical constraints, leading to forecasts that disobey vessel motion dynamics.<n>We propose a Physics-Informed Neural Network (PINN) approach for trajectory prediction that integrates a streamlined kinematic model for vessel motion into the neural network training process.
- Score: 1.740114131842074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate vessel trajectory prediction is crucial for navigational safety, route optimization, traffic management, search and rescue operations, and autonomous navigation. Traditional data-driven models lack real-world physical constraints, leading to forecasts that disobey vessel motion dynamics, such as in scenarios with limited or noisy data where sudden course changes or speed variations occur due to external factors. To address this limitation, we propose a Physics-Informed Neural Network (PINN) approach for trajectory prediction that integrates a streamlined kinematic model for vessel motion into the neural network training process via a first- and second-order, finite difference physics-based loss function. This loss function, discretized using the first-order forward Euler method, Heun's second-order approximation, and refined with a midpoint approximation based on Taylor series expansion, enforces fidelity to fundamental physical principles by penalizing deviations from expected kinematic behavior. We evaluated PINN using real-world AIS datasets that cover diverse maritime conditions and compared it with state-of-the-art models. Our results demonstrate that the proposed method reduces average displacement errors by up to 32% across models and datasets while maintaining physical consistency. These results enhance model reliability and adherence to mission-critical maritime activities, where precision translates into better situational awareness in the oceans.
Related papers
- PI-WAN: A Physics-Informed Wind-Adaptive Network for Quadrotor Dynamics Prediction in Unknown Environments [3.4802474792943805]
We introduce the Physics-Informed Wind-Adaptive Network (PI-WAN), which embeds physical constraints directly into the training process for robust quadrotor dynamics learning.<n>Specifically, PI-WAN employs a Temporal Convolutional Network (TCN) architecture that efficiently captures temporal dependencies from historical flight data.<n>By incorporating real-time prediction results into a model predictive control (MPC) framework, we achieve improvements in closed-loop tracking performance.
arXiv Detail & Related papers (2025-07-01T14:48:22Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
We develop a multi-network PINN for both the forward problem and for direct inversion of nonlinear fault friction parameters.
We present the computational PINN framework for strike-slip faults in 1D and 2D subject to rate-and-state friction.
We find that the network for the parameter inversion at the fault performs much better than the network for material displacements to which it is coupled.
arXiv Detail & Related papers (2023-12-14T23:53:25Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
We present DeepSimHO, a novel deep-learning pipeline that combines forward physics simulation and backward gradient approximation with a neural network.
Our method noticeably improves the stability of the estimation and achieves superior efficiency over test-time optimization.
arXiv Detail & Related papers (2023-10-11T05:34:36Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
We show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property.
We also offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states.
Our model yields a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2023-08-25T07:15:58Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - STDEN: Towards Physics-Guided Neural Networks for Traffic Flow
Prediction [31.49270000605409]
The lack of integration between physical principles and data-driven models is an important reason for limiting the development of this field.
We propose a physics-guided deep learning model named Spatio-Temporal Differential Equation Network (STDEN), which casts the physical mechanism of traffic flow dynamics into a deep neural network framework.
Experiments on three real-world traffic datasets in Beijing show that our model outperforms state-of-the-art baselines by a significant margin.
arXiv Detail & Related papers (2022-09-01T04:58:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation [3.0969191504482243]
We propose a kinematic wave based Deep Convolutional Neural Network (Deep CNN) to estimate high resolution traffic speed dynamics from sparse probe vehicle trajectories.
We introduce two key approaches that allow us to incorporate kinematic wave theory principles to improve the robustness of existing learning-based estimation methods.
arXiv Detail & Related papers (2021-02-04T21:51:25Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.