Orientation-Shared Convolution Representation for CT Metal Artifact
Learning
- URL: http://arxiv.org/abs/2212.13166v1
- Date: Mon, 26 Dec 2022 13:56:12 GMT
- Title: Orientation-Shared Convolution Representation for CT Metal Artifact
Learning
- Authors: Hong Wang, Qi Xie, Yuexiang Li, Yawen Huang, Deyu Meng, Yefeng Zheng
- Abstract summary: During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
- Score: 63.67718355820655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During X-ray computed tomography (CT) scanning, metallic implants carrying
with patients often lead to adverse artifacts in the captured CT images and
then impair the clinical treatment. Against this metal artifact reduction (MAR)
task, the existing deep-learning-based methods have gained promising
reconstruction performance. Nevertheless, there is still some room for further
improvement of MAR performance and generalization ability, since some important
prior knowledge underlying this specific task has not been fully exploited.
Hereby, in this paper, we carefully analyze the characteristics of metal
artifacts and propose an orientation-shared convolution representation strategy
to adapt the physical prior structures of artifacts, i.e., rotationally
symmetrical streaking patterns. The proposed method rationally adopts
Fourier-series-expansion-based filter parametrization in artifact modeling,
which can better separate artifacts from anatomical tissues and boost the model
generalizability. Comprehensive experiments executed on synthesized and
clinical datasets show the superiority of our method in detail preservation
beyond the current representative MAR methods. Code will be available at
\url{https://github.com/hongwang01/OSCNet}
Related papers
- MARformer: An Efficient Metal Artifact Reduction Transformer for Dental CBCT Images [53.62335292022492]
Metal teeth implants could bring annoying metal artifacts during the CBCT imaging process.
We develop an efficient Transformer to perform metal artifacts reduction (MAR) from dental CBCT images.
A Patch-wise Perceptive Feed Forward Network (P2FFN) is also proposed to perceive local image information for fine-grained restoration.
arXiv Detail & Related papers (2023-11-16T06:02:03Z) - Unsupervised CT Metal Artifact Reduction by Plugging Diffusion Priors in
Dual Domains [8.40564813751161]
metallic implants often cause disruptive artifacts in computed tomography (CT) images, impeding accurate diagnosis.
Several supervised deep learning-based approaches have been proposed for reducing metal artifacts (MAR)
We propose an unsupervised MAR method based on the diffusion model, a generative model with a high capacity to represent data distributions.
arXiv Detail & Related papers (2023-08-31T14:00:47Z) - Unsupervised Polychromatic Neural Representation for CT Metal Artifact
Reduction [48.1445005916672]
We present a novel Polychromatic neural representation (Polyner) to tackle the challenging problem of CT imaging when metallic implants exist within the human body.
Our Polyner achieves comparable or better performance than supervised methods on in-domain datasets.
arXiv Detail & Related papers (2023-06-27T04:50:58Z) - RetinexFlow for CT metal artifact reduction [10.612456151972113]
Metal artifacts is a major challenge in computed tomography (CT) imaging.
In this work, we formulate metal artifacts reduction problem as a combination of decomposition and completion tasks.
We propose RetinexFlow, which is a novel end-to-end image domain model based on Retinex theory and conditional normalizing flow.
arXiv Detail & Related papers (2023-06-18T10:53:52Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Metal Artifact Reduction in 2D CT Images with Self-supervised
Cross-domain Learning [30.977044473457]
We present a novel deep-learning-based approach for metal artifact reduction (MAR)
We train a neural network to restore the metal trace region values in the given metal-free sinogram.
We then design a novel FBP reconstruction loss to encourage the network to generate more perfect completion results.
arXiv Detail & Related papers (2021-09-28T04:40:57Z) - Deep Sinogram Completion with Image Prior for Metal Artifact Reduction
in CT Images [29.019325663195627]
Computed tomography (CT) has been widely used for medical diagnosis, assessment, and therapy planning and guidance.
CT images may be affected adversely in the presence of metallic objects, which could lead to severe metal artifacts.
We propose a generalizable framework for metal artifact reduction (MAR) by simultaneously leveraging the advantages of image domain and sinogram domain-based MAR techniques.
arXiv Detail & Related papers (2020-09-16T04:43:35Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Encoding Metal Mask Projection for Metal Artifact Reduction in Computed
Tomography [21.5885187197634]
Metal artifact reduction (MAR) in computed tomography (CT) is a notoriously challenging task because the artifacts are structured and non-local in the image domain.
We propose to address the problem by (1) retaining the metal-affected regions in sinogram and (2) replacing the binarized metal trace with the metal mask projection.
Our novel network yields more precise artifact-reduced images than the state-of-the-art approaches, especially when metallic objects are large.
arXiv Detail & Related papers (2020-01-02T06:39:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.