MARformer: An Efficient Metal Artifact Reduction Transformer for Dental CBCT Images
- URL: http://arxiv.org/abs/2311.09590v2
- Date: Thu, 18 Apr 2024 08:49:03 GMT
- Title: MARformer: An Efficient Metal Artifact Reduction Transformer for Dental CBCT Images
- Authors: Yuxuan Shi, Jun Xu, Dinggang Shen,
- Abstract summary: Metal teeth implants could bring annoying metal artifacts during the CBCT imaging process.
We develop an efficient Transformer to perform metal artifacts reduction (MAR) from dental CBCT images.
A Patch-wise Perceptive Feed Forward Network (P2FFN) is also proposed to perceive local image information for fine-grained restoration.
- Score: 53.62335292022492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cone Beam Computed Tomography (CBCT) plays a key role in dental diagnosis and surgery. However, the metal teeth implants could bring annoying metal artifacts during the CBCT imaging process, interfering diagnosis and downstream processing such as tooth segmentation. In this paper, we develop an efficient Transformer to perform metal artifacts reduction (MAR) from dental CBCT images. The proposed MAR Transformer (MARformer) reduces computation complexity in the multihead self-attention by a new Dimension-Reduced Self-Attention (DRSA) module, based on that the CBCT images have globally similar structure. A Patch-wise Perceptive Feed Forward Network (P2FFN) is also proposed to perceive local image information for fine-grained restoration. Experimental results on CBCT images with synthetic and real-world metal artifacts show that our MARformer is efficient and outperforms previous MAR methods and two restoration Transformers.
Related papers
- ToothSegNet: Image Degradation meets Tooth Segmentation in CBCT Images [13.572872371886577]
ToothSegNet is a new framework which acquaints the segmentation model with generated degraded images during training.
ToothSegNet produces more precise segmentation and outperforms the state-of-the-art medical image segmentation methods.
arXiv Detail & Related papers (2023-07-05T01:41:24Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction [54.19448988321891]
We propose an end-to-end deep learning framework that utilizes T1-weighted images (T1WIs) as auxiliary modalities to expedite T2WIs' acquisitions.
We employ Optimal Transport (OT) to synthesize T2WIs by aligning T1WIs and performing cross-modal synthesis.
We prove that the reconstructed T2WIs and the synthetic T2WIs become closer on the T2 image manifold with iterations increasing.
arXiv Detail & Related papers (2023-05-04T12:20:51Z) - Nonlinear ill-posed problem in low-dose dental cone-beam computed
tomography [1.039109674772348]
This paper explains the underlying reasons why dental CBCT is more ill-posed than standard computed tomography.
Despite this severe ill-posedness, the demand for dental CBCT systems is rapidly growing because of their cost competitiveness and low radiation dose.
arXiv Detail & Related papers (2023-03-03T02:46:15Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - Metal Artifact Reduction with Intra-Oral Scan Data for 3D Low Dose
Maxillofacial CBCT Modeling [0.7444835592104696]
A two-stage metal artifact reduction method is proposed for accurate 3D low-dose maxillofacial CBCT modeling.
In the first stage, an image-to-image deep learning network is employed to mitigate metal-related artifacts.
In the second stage, a 3D maxillofacial model is constructed by segmenting the bones from the dental CBCT image corrected.
arXiv Detail & Related papers (2022-02-08T00:24:41Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Metal Artifact Reduction in 2D CT Images with Self-supervised
Cross-domain Learning [30.977044473457]
We present a novel deep-learning-based approach for metal artifact reduction (MAR)
We train a neural network to restore the metal trace region values in the given metal-free sinogram.
We then design a novel FBP reconstruction loss to encourage the network to generate more perfect completion results.
arXiv Detail & Related papers (2021-09-28T04:40:57Z) - A Learning-based Method for Online Adjustment of C-arm Cone-Beam CT
Source Trajectories for Artifact Avoidance [47.345403652324514]
The reconstruction quality attainable with commercial CBCT devices is insufficient due to metal artifacts in the presence of pedicle screws.
We propose to adjust the C-arm CBCT source trajectory during the scan to optimize reconstruction quality with respect to a certain task.
We demonstrate that convolutional neural networks trained on realistically simulated data are capable of predicting quality metrics that enable scene-specific adjustments of the CBCT source trajectory.
arXiv Detail & Related papers (2020-08-14T09:23:50Z) - Encoding Metal Mask Projection for Metal Artifact Reduction in Computed
Tomography [21.5885187197634]
Metal artifact reduction (MAR) in computed tomography (CT) is a notoriously challenging task because the artifacts are structured and non-local in the image domain.
We propose to address the problem by (1) retaining the metal-affected regions in sinogram and (2) replacing the binarized metal trace with the metal mask projection.
Our novel network yields more precise artifact-reduced images than the state-of-the-art approaches, especially when metallic objects are large.
arXiv Detail & Related papers (2020-01-02T06:39:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.